
Improved Motion Planning Speed and Safety using
Regions of Inevitable Collision

Nicholas Chan and James Kuffner and Matthew Zucker
The Robotics Institute

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA, 15213, USA

{ncchan, kuffner, mzucker}@cs.cmu.edu

Abstract Providing safety guarantees for autonomous robots operating in envi-
ronments with moving obstacles is a difficult problem, particularly for underactu-
ated systems or systems with drift due to momentum. The conventional approach
to replanning in dynamic environments typically computes partial plans within
the allotted CPU time and validates explored states through robot-obstacle colli-
sion checks. However, this approach cannot provide any safety guarantees for the
robot beyond the finite planning horizon. This paper explores the approximate
computation of regions of inevitable collision for state validation in a replanning
framework for dynamic systems. We present experimental results that demon-
strate the effectiveness of this technique in providing dramatically improved safety
for partial plans in the domain of an underactuated dynamic vehicle.

Figure 1. Top Left: Planning among moving obstacles for an underactuated spacecraft; Bottom
Left: Cost maps over time showing the Regions of Inevitable Collision (RIC); Right: Detail of
RIC combined cost map visualization.



1 Planning for Dynamic Systems

The goal of motion planning is to compute a continuous sequence of controls that en-
ables a robotic system to accomplish a given task while obeying various kinematic and
dynamic constraints. Constraints may arise from obstacles that must be avoided in the
environment, or from the system dynamics due to momentum conservation, velocity and
acceleration bounds, or underactuation. Path planning algorithms simplify the problem
by considering only the kinematics of the problem and ignoring the system dynamics.
This often allows the problem to be expressed as a search in a lower dimensional space
than the full state space of the system. But ultimately, any valid solution must obey all
of the constraints.

A planning algorithm examines and evaluates possible future control actions until
either some goal state is reached, all possible actions have been evaluated, or the planner
exceeds some time or memory limitation. For a robot operating in unknown or dynamic
environments, the planner is typically iterated and interleaved with motion execution
and perception processing. This replanning process typically imposes time constraints
on the planner. If the planner is unable to reach the goal state in the allotted time,
a partial plan is returned. The robot then executes some segment of the partial plan,
while the planning process is iterated. The time limit imposed on the planner induces
a planning horizon, or a future time beyond which the planner was unable to examine
the state of the system. The planning horizon generally corresponds to the length of the
partial plan returned during a particular iteration.

The avoidance of stationary obstacles in a motion planning algorithm is often ac-
complished through the use of a geometric interference detection routine (i.e. collision
checking routine). Future states that result in a collision of the robot geometry with
obstacle geometry are typically discarded during the search. This ensures that any par-
tial plan made up of states in the search tree will never involve a collision. However,
for many dynamic systems, states that are not immediately in collision with an obstacle
can still present just as much danger in the context of partial plans. For example, a
car-like vehicle with momentum moving at high speed towards a wide brick wall obstacle
might not have enough braking distance or maneuverability to avoid impact. Thus, even
though the car’s current state is free of collision, the car will inevitably collide regardless
of the future control actions applied.

2 Regions of Inevitable Collision

States that lead to collision regardless of control action make up a region of inevitable
collision or RIC (LaValle and Kuffner (1999, 2001)), alternately referred to as inevitable
collision states or ICS (Fraichard (2007)). During planning these states should be avoided
along with states which intersect obstacles in order to guarantee safety. A limited horizon
planner without inevitable collision checks could possibly select a trajectory with an
unsafe terminal state that ultimately leads to a future collision outside of the planning
horizon. Consider again the example of a car moving at a constant velocity towards a wall.
If a future potential impact with the wall is five seconds away and the planning horizon
is four seconds, it is likely that executing the computed partial plan endanger the car. If



the car requires four seconds of stopping distance, the next time the planner replans it
may already be too late. Clearly in this case the problem could be resolved by increasing
the planning horizon to a length safely above the vehicle’s stopping distance. However,
the computational resources to extend the planning horizon so may not be available.
More importantly, this issue is not so easily resolved in cases with moving obstacles, or
systems with more complex ”stopping distances”, such as the underactuated system with
drift considered in this paper. In some cases, an arbitrarily long planning horizon may
be required to avoid entering a region of inevitable collision, which may impractical or
impossible given a time-limited planning architecture.

A limited-horizon planner that tests for RIC membership can improve overall system
safety by discarding any generated state that would lead to an inevitable collision. The-
oretically, if we can guarantee that the system will never enter an RIC then by definition
there will always be a safe control action to take (Fraichard (2007)). If the planner can
always identify safe actions, then we can guarantee that no collision will occur, regardless
of the planning horizon length (assuming perfect information and control). This is the
primary significant benefit to using RIC checks during planning. The second important
benefit is improved planning efficiency. A planner without regions of inevitable collision
checks could potentially generate many branches in the search tree that are ultimately
useless because all leaf states lead to collisions. Depending on the size of the regions, the
size of the time step, and the discretization of the control inputs, the planner may waste
significant resources examining useless paths through regions of inevitable collision. By
eliminating these states in advance, a planner with RIC checks can save a great deal of
time and memory, depending on how efficiently it can identify those regions.

In this paper we present a limited horizon motion planner that uses approximate
representations of the regions of inevitable collision in order to improve overall planning
safety and speed. The experimental domain is a simulated underactuated spaceship
vehicle with momentum that must navigate through a space of moving obstacles, similar
to the popular game “Asteroids”. An A* search is performed over possible control actions
in order to guide the ship towards a target goal location while avoiding collisions with
obstacles. In addition to computing binary regions of inevitable collision (RIC) we also
introduce two new concepts: the region of potential collision (RPC), and the region
of near-collision (RNC). States in the RPC are those for which some set of control
actions exist that lead to a collision, and states in the RNC will result in a collision
unless the vehicle acts within a certain limited window of time. The RNC and the
RPC represent potentially dangerous states that are scored according to risk during
planning. Our experiments have shown that utilizing RIC, RNC, and RPC checks during
planning resulted in moderate to significant improvements in both speed and overall
safety performance.

3 Related Work

The problem of efficient planning for systems with vehicle or obstacle dynamics has been
explored by a number of previous research efforts. There is a long history in the con-
trols literature for system verification through computing implicitly or explicity the set
of “reachable states” of a dynamic system. Most of this work does not consider robots



moving in environments with dynamic obstacles, so we will consider primarily the de-
velopments in the path planning community. Representative early work that considered
motion planning in the presence of moving obstacles was (Reif and Sharir (1985)). Con-
sideration of “velocity obstacles” for planning in dynamic environments was presented
in (Fiorini and Shiller (1998)). The concept of the dynamic window and investigation of
its effect in the domain of partial planning with feedback for localization was given in
(Fox et al. (1995); Fox (1998)). Planning with limited perception within a probabilistic
framework was considered in (Simmons and Koenig (1995)). The term “regions of in-
evitable collision” was introduced in (LaValle and Kuffner (1999, 2001)). Applications
and analysis of inevitable collision states was explored in (Fraichard and Asama (2004)),
and applied in (Petti and Fraichard (2005)). An approach that decomposes path and ve-
locity considerations was developed in (Fraichard and Laugier (1993)) and (Laugier et al.
(2006)), for the purposes of safe navigation. Motion planning for an underactuated sys-
tem in the context of a game with moving obstacles was explored in (Ladd and Kavraki
(2005)). (Zucker (2006)) examined the analytic RIC computation for convex polygonal
obstacles and implemented a planner which exploits RICs for speed enhancements. In
this paper, we present results for a planner that explicitly utilizes of regions of inevitable
collision to control a system with complex dynamics, underactuation and drift.

4 Planning with Regions of Inevitable Collision

4.1 The Planning Model

Our example planner is a limited-time horizon A* planner (Hart et al. (1968)) that
explores the possible control actions in order of ascending expected path cost. Expected
costs are handled using precomputed cost maps, and a fixed length plan is generated and
replanned at every step. The planner has a fixed relative goal, but does not terminate
when it is reached, hence the robot can remain safe once the goal is reached through
continually replanning. The dynamics of the robot resemble the spaceship in the classic
video game “Asteroids”. The environment is a boundless two dimensional plane, empty
except for the ship and various moving asteroid obstacles. The asteroids are modeled as
circles of varying radius that move in a fixed direction at a constant speed. The asteroids
do not collide with one another nor alter their velocities or heading, which simplifies the
computation of approximate RICs. The ship is able to thrust forward only and rotate
left or right, and has linear and angular momentum. The ship is only able to change its
speed by thrusting in the direction of its current heading. Due to angular momentum,
establishing a new heading can require applying a rather complex sequence of control
actions.

4.2 Defining the RIC

The region of inevitable collision, denoted XRIC , is the set of all robot states for which,
regardless of control action, the robot will collide with an obstacle at some point in the
future. Given an exact computation of the theorectical RIC, it is possible to guarantee
a planner will never hit an obstacle, regardless of limited planning horizons (Fraichard
(2007)). By definition, as long as the planner avoids RICs, there will always be a control



action available to avoid obstacles. However, it is often that case that the exact computa-
tion of XRIC is impractical or infeasible for real-world problems. Fortunately, computing
approximate representations of RICs provides a number of safety and performance ben-
efits, similar to what one would expect from an exact RIC computation (albeit without
the strict safety guarantees).

4.3 Computation of exact RICs

The most obvious method to determine whether a state is a member of XRIC is to
simulate all possible control actions and determine if all possible paths lead to collision.
However, there is no inherent upper bound on the length of such a computation. For
states outside the RIC, this algorithm will not terminate. Alternatively, we define XRIC

iteratively with:

x ∈ XRIC ⇔ ∀y : y ∈ succ(x), y ∈ XRIC

x ∩O 6= ∅ → x ∈ XRIC

where O represents the set of obstacles. Thus any state whose successors are all in XRIC

is also in XRIC and any state intersecting an obstacle is also in XRIC . From this definition
we can also define the complement of XRIC , Xfree with:

x ∈ Xfree ⇔ x ∩O = ∅ ∧ ∃y : y ∈ succ(x) ∧ y /∈ XRIC

If we can determine whether a given state x is not contained in XRIC , then it follows
that any predecessor states of x are also not in XRIC . Similarly, if we can show that all
successors of a given state x are members of XRIC , then by definition x is also a member
of XRIC .

For problems involving non-moving obstacles, there are typically many states that lie
outside of XRIC . For example, consider the case of a car traveling in an environment
filled with stationary obstacles. It is simple to show that any stationary state not already
intersecting an obstacle can immediately be labeled as outside the RIC. The obstacles will
remain stationary and the vehicle can simply perform the control action that maintains
zero velocity. In this case, no collision will ever occur, and we conclude that all collision-
free stationary states are members of Xfree.

However, in the case of moving obstacles, we can no longer assert that stationary
states will remain free of collision. In fact, for the dynamic system considered in this
paper, being “stationary” has little meaning. The reason is that there is no practical dif-
ference between a stationary ship with an asteroid drifting towards it, and a ship drifting
towards a stationary asteroid. As a result, we are unable to prove that a particular “base
case” state is a member of Xfree. This difficulty, combined with a limited sensing hori-
zon and the periodic introduction of random asteroids into the environment, precludes
directly reasoning about XRIC membership. However, it is both practical and beneficial
to compute approximate representations of XRIC . Rather than being forced to extend
the planning horizon, our experimental results show that computing approximate RICs
yields significant planner speed and safety gains at the cost of strict safety guarantees.



Figure 2. Left: RIC coordinate transformations: (a) unsimplified; (b) with ship position
and velocity folded into asteroid position and velocity; (c) with ship heading zeroed. Right:
Precomputed reachability sets with the ship angular velocity increasing from left to right.

4.4 Approximations made when computing RICs

The most significant approximation we make when testing for RIC membership is rep-
resenting the full RIC as the union of the individual RICs calculated for each asteroid
independently. Testing the RIC for each obstacle separately and combining the results
may neglect to detect dangerous states in which the motion of several obstacles conspire
against the robot. Situations in which the RIC of two obstacles is larger than the union
of their individual RICs is illustrated and discussed further in (Zucker (2006)).

Another approximation we make when computing RICs is limiting the time horizon
used to determine if it is possible to escape a collision. During RIC computation, if a
state is found to be in danger of collision its successor states are examined to determine
whether a possible escape path exists that avoids collision within the time limit. Two
possibilities exist: 1) an escape route is found, or 2) all successor states examined were
found to terminate in collision. Because our planner only examines successor states up
to a fixed depth, some states will be mislabeled as belonging to the RIC when in fact an
undiscovered escape route exists outside the depth limit. Note that this is a conservative
approximation, and does not affect planner safety in the same way that considering
obstacle RICs independently does.

4.5 Computing RICs

For the purposes of planning, we require a function that tests whether a single given
state is within the RIC. Note that several aspects of a robot state will influence the size
and shape of the RIC. For the example system in this paper, a ship pointing towards an
oncoming asteroid will project a much larger RIC than a ship whose heading direction
points away from the oncoming asteroid. In the former case, the ship must first rotate to
alter its heading and then proceed to thrust away from the asteriod. Similarly, angular
momentum, position, velocity and heading all influence the size and shape of the RIC.
The RIC occupies a volume in n dimensions, where n is the number of state variables
necessary to describe the robot state. In our example, n is six (x and y position, x and
y velocity, heading, and angular velocity). The high-dimensionality of the state makes
any attempt at RIC computation difficult. However, for our example, we can utilize
coordinate system changes in order to effectively reduce the complexity of the problem
significantly (Figure 2).

The first simplification is based on the fact that only the relative position and velocities



of the ship and asteroid matters. There is nothing to differentiate one absolute position
from another, therefore we can represent the asteroid relative position and velocity in a
coordinate frame attached to the origin of the ship and aligned with the ship heading.
Figure 2 illustrates the original problem and the simplified problem after the change of
coordinates. Ultimately, only the asteroid relative position, asteroid relative velocity,
and ship angular velocity remain variables.

After the coordinate transformation, it is straightforward to determine whether a
collision will occur by simply testing intersection with the solid line of the asteroid relative
trajectory. States for which the ship bounding circle does not intersect the solid line
are clearly outside the RIC for that asteroid. The ship can avoid collision by simply
applying no action. States that do intersect the solid line are in danger of collision, and
we must determine whether or not collision can be avoided. In general, we would have to
exaustively explore the application of all possible control actions up to some time horizon
in order to search for an escape trajectory up to some finite depth. However, we can
make this computation step drastically more efficient by precomputing and storing tables
of reachability sets (i.e. discretized tables of reachable states). Because angular velocity
is the only remaining free variable in the ship state for our system, it is only necessary to
store separate tables for various discrete values of the ship angular velocity. Examples of
these these precomputed reachability sets are illustrated in Figure 2Right. Using these
lookup tables, the planner can more efficiently test whether or not the ship can escape
before the asteroid hits it by backtracing trajectories outside of the asteroid solid line and
verifying that they are free of collision. Along with the assumptions in Section 4.4, use of
these tables introduces another approximation in the computation of the RIC. In theory,
an arbitrarily large asteroid would require an arbitrarily large reachability set in order to
escape collsion. The limited horizon sets used here would be insufficient, resulting in the
misclassification of that state as within the RIC. However, if we can bound the maximum
size of the asteroid, we can ensure that any asteroid for which an escape route exists up
to the resolution and discretization of our table, the ship will avoid colliding with.

If the planner is able to find an escape route, or the state is not in danger of collision,
then the state is marked as not in the RIC. Otherwise, the state is classified as within
the RIC. This procedure is repeated for all asteroids and if the state is within any of
the individual RICs, then the state marked as such. Recall that in order to provide
time-limited safety guarantees with multiple moving obstacles, we need to consider more
than simply testing for containment in the union of all individual obstacle RICs. This
could be done by actually enumerating and testing all possible escape routes identified
from the reachability sets, and then verifying that at least one trajectory can escape
all obstacle RICs. This more complete test is not implemented in the current version
of our planner. In summary, although several discretizations and approximations are
introduced with this method, we now have a reasonably fast and efficient test for RIC
membership. Figure 3 illustrates several regions of inevitable collision under different
conditions.



Figure 3. Left: RICs for an obstacle moving in a fixed northwest direction for different ship
headings. Right: RICs for obstacles moving in different directions given a fixed ship heading.

5 Regions of Near and Potential Collision

During our experiments with developing approximate RIC membership tests, we discov-
ered that even if a set of states is found to be outside of the RIC, not all states in the
set are equally safe. Some states are more dangerous due to their proximity in both
space and time to RIC states. We introduce two new classification sets of states: the
region of near collision (RNC) and the region of potential collision(RPC). The purpose
in defining these sets is to enhance planner safety by providing additional metrics and
heuristics useful for selecting the best possible control action to apply during the next
time step from among the valid set of available actions and/or RIC escape trajectories.
Our experiments have found the use of the RNC and RPC heuristics useful for improving
overall planner safety performance and output path quality. In addition, although we did
not implement simulated noise to our planner, we believe that utilizing RPC and RNC
heuristics has the potential to improve planner safety in the presence of uncertainty.

5.1 Regions of Near Collision

A state that is not inside the RIC always has at least one available trajectory that will
avoid collision. However, for states near the border of the RIC, the number of available
safe trajectories may be very limited. It is not always certain that the planner will be
able to discover one of the few control actions that avoids entering the RIC. Additionally,
even if a safe control action is selected, uncertainty and error in perception and control
may inadvertently cause the robot to enter the RIC. Although being in a state outside
of the RIC guarantees that at least one control action avoids collision, it does not mean
that finding that control action will be possible. Thus, our planner should have some
means of identifying and avoiding dangerous states very close RIC boundaries.

The region of near collision (RNC) is a natural extension to the concept of the RIC,
and can be easily computed using our planner framework to help identify dangerous
states. The RNC is defined as sets of states that are threatened by a future near-term
collision, but have the possibility of escaping with a certain amount of time to spare.
Like RICs, if no action is taken, a collision will eventually occur. However, RNCs are
composed of non-RIC states that are in danger of eventually entering the RIC, meaning
there is still some possibility of avoiding collision but that the “window of opportunity”
is closing. For example, if a robot requires five seconds to avoid an oncoming obstacle, a



position four seconds away might be within the RIC, while a position six seconds might
be within the RNC. In other words, if evasive action is not taken immediately in the
latter case, the robot will soon find itself inside of the RIC.

Unlike binary RIC tests, a function for detecting if a state is within an RNC can return
a value that represents the relative risk of being in that particular state. RIC states do
not generally need danger ratings, because from the point of view of the planner, all
states within the RIC are equally undesirable. However, for states within the RNC, the
relative ability of the robot to avoid future collision depends on the proximity of the RIC
and the skill of the planner in identifying escape routes. We implemented a simple and
straightforward extension to our RIC planning framework to evaluate the relative danger
of RNC states. For states in danger of collision but with several possible escape routes,
one could simply count the number of available escape routes and assign a heuristic cost.
States with few available escape trajectories are assigned a high cost relative to RNC
states with many available escape routes. In our planner implementation, we assigned a
heuristic cost not according to the number of available escape trajectories, but according
to the “best” available escape route. The best escape route is defined as the trajectory
that avoids the RIC with the widest margin in both space and time from among all
available escape routes. Small margins indicate dangerous states, while wide margins
indicate relatively safe states. States with margins below some fixed value are considered
inside the RNC and their danger value is scaled linearly according to the margin width.
The danger values are used by the planner to assign heuristic costs to undesirable but
reachable RNC states, thus discouraging them, but allowing them if necessary to reach
the goal. Figure 4 illustrates several regions of near collision.

5.2 Regions of Potential Collision

While RNC checks can improve safety in cases of impending collisions, they provide
no warning to states that are not already in the path of an obstacle. It is possible for a
robot that is in no danger of collision to suddenly enter an RIC after the application of a
single control action. The region of potential collision (RPC) includes states that are in
danger of entering an RIC due to the planner erroneously selecting a bad control action,
or suffering from errors or uncertainty in control. As with RNCs, states within RPCs
they are rated heuristically according to how dangerous they are. Computation of RPC
set membership is again a simple extension of the RIC test. After the state is prepared
for RIC testing, the reachability sets are used to determine the lowest cost trajectory
that still leads to collision or enters the RIC. If this cost is below a certain threshold,
then the state is considered inside the RPC. The state danger is associated with this cost,
and the planner uses RPC danger values to heuristically increase the costs of trajectories
that pass through RPC states. Hence, the planner tends to avoid both RPC and RNC
states, which discourages the robot from approaching these dangerous states.

6 Results and Analysis

We have found that including approximate RIC, RNC, and RPC checks has a positive
effect on planner safety and reduces the number of states examined during planning. This



Figure 4. RICs, RNCs, and RPCs for a single obstacle under different conditions. In all images
the ship is facing right. The RNCs and RPCs are color-coded to illustrate relative danger levels
(dark red regions are RICs). The scenarios are: (a) no motion; (b) obstacle moving left; (c)
obstacle moving towards the upper-left; (d) obstacle moving towards the upper-right.

Plan Total Collisions Avg. Node Expansions
Steps A* w/RIC A* Improvement A* w/RIC A* Improvement

3 18 22 18.18% 7.27 7.40 1.76%
4 22 25 12.00% 12.22 12.84 4.83%
5 10 20 50.00% 23.67 27.81 14.88%
6 1 4 75.00% 44.45 65.41 32.04%

Table 1. Collision and node expansion reduction for various plan lengths (100 trials).

improvement varies with both planner and obstacle parameters. Testing involved running
a limited-horizon A* planner with and without RIC checks on multiple trials involving
random obstacle fields. Each planner version was allotted 100 milliseconds of planning
time per iteration, and all experiments were conducted on a 1.6GHz single-processor CPU
standard PC. The number of collisions caused by each planner was recorded to evaluate
plan safety and the number of node expansions per plan step was recorded to evaluate
planning efficiency. The results are summarized in Tables 1-4. The most noticeable
variance in performance came from adjusting the length of the planning horizon. (Ta-
ble 1) While increasing the plan length improved both the standard A* and A* with RIC
checks planner performance, the benefits to the RIC planner were significantly greater,
as evidenced by the greater reduction in total collisions with longer planning horizons.
Additionally the efficiency benefits of pruning states using the RIC checks become more
evident as plan length increases. As the search tree depth increases, the opportunity to
eliminate large numbers of nodes saves additional computation by reducing the effective
branching factor.

One interesting factor that affects RIC planner performance is obstacle size (Table 2).
Bigger obstacles are more difficult to bypass, often making collisions more likely. Nat-
urally, larger obstacles produce larger RICs. As expected, RIC planner performance
increases initially, then degrades as obstacles become too large for accurate RIC compu-
tation. Planner efficiency remains fairly constant.



Obstacle Total Collisions Avg. Node Expansions
Size Range A* w/RIC A* Improvement A* w/RIC A* Improvement

0.5 - 3.0 4 3 -33.33% 18.83 23.78 20.82%
0.5 - 5.0 6 14 57.14% 26.61 33.20 19.85%
0.5 - 6.0 6 16 62.50% 30.27 36.59 17.27%
0.5 - 7.0 11 15 26.66% 28.13 37.24 24.48%
0.5 - 8.0 17 17 0.00% 33.58 41.31 18.71%

Table 2. Collision and node expansion reduction for different obstacle size ranges (50 trials).

Obstacle Total Collisions Avg. Node Expansions
Speed A* w/RIC A* Improvement A* w/RIC A* Improvement

0.25 - 0.5 2 3 33.33% 20.09 22.71 11.54%
0.50 - 1.0 6 14 57.14% 26.61 33.20 19.85%
0.75 - 1.5 9 12 25.00% 26.02 39.28 33.76%
1.0 - 2.0 17 25 32.00% 27.15 38.73 29.95%

Table 3. Collision and node expansion reduction for various obstacle speeds (50 trials).

Another factor in planner performance was the range of obstacle relative speeds (Ta-
ble 3). Faster moving obstacles induce larger RICs, as they afford less time for evasive
maneuvering. Unlike increasing obstacle size, increasing obstacle speed does not ad-
versely effect RIC computation. However as speeds become very high relative to ship
speed, the chances of an unavoidable collision increase, resulting in rapid performance
gains initially, then more gradually as speeds increase.

7 Summary and Discussion

We have presented a limited-horizon planner that uses approximate representations of
the RIC in order to improve overall planning safety and performance. An A* search is
performed over possible control actions in order to guide an underactuated ship with drift
towards a target goal location while avoiding collisions with obstacles. We also introduce
the notion of the regions of near and potential collsions (RNCs and RPCs). States in
the RNC will result in a collision unless the vehicle acts within a certain limited window
of time, and states in the RPC are those for which some set of control actions exist
that lead to a collision. The RNC and the RPC represent potentially dangerous states
that are heuristically evaluated according to risk during planning. Experimental results
for our example domain demonstrate that utilizing RIC, RNC, and RPC checks during
planning resulted in moderate to significant improvements in both speed and overall
safety and performance. Safety is improved by avoiding collisions obscured by limited
planning horizons, and planning efficiency is increased by more quickly identifying and
pruning large subtrees with terminal collision states from the search tree.

The primary drawbacks and limitation of our current implementation include the
approximate computation of the RICs and the discretizations that are needed for an



efficient implementation. For high dimensional problems, it may not be feasible to ex-
plicitly store large tables of precomputed reachability sets. Theoretically, a planner able
to compute exact representations of the RIC can provide safety guarantees even with a
very short planning horizon. Computation of more accurate RICs and computation of
RICs for other systems are potential areas of further investigation. Additionally, a more
detailed examination and analysis of the benefits of RNCs and RPCs may prove useful
to the design of “safe” high-performance planners for a variety of applications involving
complex dynamic systems.

Bibliography

K. Bekris and L. Kavraki. Greedy but safe replanning under kinodynamic constraints. In Proc. IEEE
Int’l Conf. on Robotics and Automation, pages 704–710, April 2007.

J. Bruce and M. Veloso. Real-time randomized path planning for robot navigation. In Proc. IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems, Oct 2002.

D. Ferguson, N. Kalra, and A.Stentz. Replanning with RRTs. In Proc. IEEE Int’l Conf. on Robotics
and Automation, May 2006.

P. Fiorini and Z. Shiller. Motion planning in dynamic environments using velocity obstacles. International
Journal of Robotics Research, 17(7):760–772, 1998.

D. Fox. Markov Localization: A Probabilistic Framework for Mobile Robot Localization and Navigation.
PhD thesis, University of Bonn, Germany, 1998.

D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance. IEEE Robotics
and Automation Magazine, 4(1), mar 1995.

T. Fraichard. A short paper about motion safety. In Proc. IEEE Int’l Conf. on Robotics and Automation,
2007.

T. Fraichard and H. Asama. Inevitable collision states - a step towards safer robots? Advanced Robotics,
18(10):1001–1024, 2004.

T. Fraichard and C. Laugier. Path-velocity decomposition revisited and applied to dynamic trajectory
planning. In IEEE Intl. Conf. Automation and Robotics, pages 40–45, 1993.

E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning for nonlinear systems with
symmetries. IEEE Trans. on Robotics and Automation, 21(6):1077–1091, Dec 2005.

P. Hart, N. Nilsson, and B. Rafael. A formal basis for the heuristic determination of minimum cost
paths. IEEE trans. Sys. Sci. and Cyb., 4:100–107, 1968.

A. Ladd and L. Kavraki. Fast tree-based exploration of state space for robots with dynamics. Algorithmic
Foundations of Robotics, 17:297–312, 2005.

M. Lau and J. Kuffner. Precomputed search trees: Planning for interactive goal-driven animation. In
ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2006.

C. Laugier, S. Petti, G. Vasquez, A. Dizan, M. Yguel, T. Fraichard, and O. Aycard. Steps towards safe
navigation in open and dynamic environments. In Auton. Nav. Dyn. Environments. Springer, 2006.

S. LaValle and J. Kuffner. Randomized kinodynamic planning. International Journal of Robotics
Research, 20(5):378–400, May 2001.

S. LaValle and J. Kuffner. Randomized kinodynamic planning. In Proc. IEEE Int’l Conf. on Robotics
and Automation (ICRA’99), 1999.

S. Petti and T. Fraichard. Safe motion planning in dynamic environments. In Proc. IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems, pages 2210–2215, 2005.

J. Phillips, N. Bedrossian, and L. Kavraki. Guided expansive spaces trees: A search strategy for motion
and cost-constrained state spaces. In Proc. IEEE Int’l Conf. on Robotics and Automation, Apr 2004.

M. Pitvoraiko and A. Kelly. Generating near minimal spanning control sets for constrained motion
planning in discrete state spaces. In IROS, August 2005.

J. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In IEEE Symposium on
Foundations of Computer Science, pages 144–154, 1985.

R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable environments. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 1080–1087, 1995.

J. van den Berg, D. Ferguson, and J. Kuffner. Anytime path planning and replanning in dynamic
environments. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 2366–2371, 2006.

M. Zucker. Approximating state-space obstacles for non-holonomic motion planning. Technical Report
06-27, Robotics Institute, Carnegie Mellon University, May 2006.


