
Planning Motions with Intentions

Yoshihito Kogay, Koichi Kondoz, James Kuffnery and Jean-Claude Latombey

y Robotics Laboratory, Department of Computer Science, Stanford University
Stanford, CA 94305, USA

z R & D Center, Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki, 210, Japan

Abstract

We apply manipulation planning to computer animation. A
new path planner is presented that automatically computes
the collision-free trajectories for several cooperating arms
to manipulate a movable object between two configurations.
This implemented planner is capable of dealing with com-
plicated tasks where regrasping is involved. In addition, we
present a new inverse kinematics algorithm for the human
arms. This algorithm is utilized by the planner for the gen-
eration of realistic human arm motions as they manipulate
objects. We view our system as a tool for facilitating the
production of animation.

Keywords: Task-level graphic animation, automatic ma-
nipulation planning, Human arm kinematics.

1 Introduction

Mundane details keep us from vigorously attacking big-
ger ideas. This is the motivation for achieving task-level
animation. From task-level descriptions, the animation of
figures in a scene can be automatically computed by an
appropriate motion planner. The animator can thereby
concentrate on creating imaginative graphics, rather than
labouring over the chore of moving these figures in a re-
alistic and collision-free manner. In this paper we present

yotto@flamingo.stanford.edu

kondo2@mel.uki.rdc.toshiba.co.jp

kuffner@flamingo.stanford.edu

latombe@flamingo.stanford.edu

our efforts towards realizing a subset of this ultimate goal -
the automatic generation of human and robot arm motions
to complete manipulation tasks.

Why study manipulation with arms? Human figures of-
ten play an integral role in computer animation. Conse-
quently, there are arm motions and more specifically ma-
nipulation motions to animate. Another major application
is in ergonomics. Since most products are utilized, assem-
bled, maintained, and repaired by humans, and require for
most cases some action by the human arms, by simulating
and viewing these arm motions through computer graphics,
one can evaluate the design of the product in terms of its
usability. This will reduce the number of mock-up models
needed to come up with the final design. Again, this would
allow the designer more time towards creating high-quality
products.

Unlike the motion of passive systems like falling objects
or bouncing balls, the motion of human and robot arms for
the purpose of manipulation are “motions with intentions”.
The arms move not through some predictable trajectory due
to the laws of physics (as is the case with a falling object
[2, 9]) but with the intention of completing some task. A
planner is needed to determine how the arms must move
to complete the task at hand. Although there has been
previous work on simulating walking and lifting motions,
this is the first attempt to automatically generate complex
manipulation motions.

Our problem is thus to find a collision-free path for the
arms to grasp and then carry some specified movable object
from its initial location to a desired goal location. This
problem is known as the multi-arm manipulation planning
problem [12, 7]. A crucial difference, relative to more clas-
sical path planning, is that we must account for the ability
of the arms to change their grasp of the object. Indeed,
for some tasks the arms may need to ungrasp the object
and regrasp it in a new manner to successfully complete the
motion.

We present a new planner that solves this multi-arm ma-
nipulation problem [12]. The planner needs as input the
geometry of the environment, the initial and goal configu-

rations of the movable object and arms, a set of potential
grasps of the movable object, and the inverse kinematics
of the arms. With appropriate book-keeping, the animator
would simply specify the goal configuration of the mov-
able object (a task-level description) to generate the desired
animation.

The planning approach is flexible in regards to the arm
types that can be considered. The only restriction is that the
arms must have an inverse kinematics algorithm. Thus, in
addition to the planner, we present a new inverse kinematics
algorithm for the human arms based on results from neu-
rophysiology. This algorithm resolves the redundancy of
the human arms by utilizing a sensorimotor transformation
model [29, 30]. The result is the automatic animation of
human arm manipulation tasks.

In addition to the motion planning aspect, we address
the issue of producing natural motions when human figures
are animated. By applying results from neurophysiology
to various parts of the planner, for instance the inverse
kinematics, we hope to achieve a good approximation of
naturalness. We believe that the geometry of the motions
produced by the planner are in fact quite natural.1

Fig. 1 is a series of snapshots along a manipulation path
computed by our planner. Once the necessary models of
the environment are read by the planner, the input from the
animator is simply the goal location for the eye glasses,
in this case getting placed on the head. Note, the planner
found automatically that the arms must ungrasp and regrasp
the glasses in order to complete the task.

Section 2 relates our efforts to previous work. Section 3
describes the details of our motion planner. Section 4 is the
derivation of the human arm inverse kinematics. Section
5 is a discussion of how our system takes natural human
arm motion into consideration. Finally, Section 6 presents
results obtained with the planner.

2 Related Work

Planning motions with intentions for robot and human arm
manipulation is related to several different areas of research.
We roughly classify this related work into three categories,
manipulation planning, animation of human figures, and
neurophysiology.

Manipulation Planning: The use of path planning to
automatically generate graphic animation was already sug-
gested in [18]. Research strictly addressing manipulation
planning is fairly recent. The first paper to tackle this prob-
lem is by Wilfong [34]. It considers a single-body robot
translating in a 2D workspace with multiple movable ob-
jects. The robot, the movable objects and obstacles are

1This paper does not consider the velocity distribution along the
planned motions.

modelled as convex polygons. In order for the movable ob-
jects to reach their specified goal the robot must “grasp” and
carry them there. Wilfong shows that planning a manipu-
lation path to bring the movable objects to their specified
goal locations is PSPACE-hard. When there is a single mov-
able object, he proposes a complete algorithm that runs
in O�n3 log2 n� time, where n is the total number of ver-
tices of all the objects in the environment. Laumond and
Alami [15] propose an O�n4� algorithm to solve a similar
problem where the robot and the movable object are both
discs and the obstacles are polygonal.

Our work differs from this previous research in several
ways. Rather than dealing with a single robot, we consider
the case of multiple human and robot arms manipulating
objects in a 3D workspace. In addition, whereas the previ-
ous work is more theoretical in nature, our focus is more on
developing an effective approach to solving manipulation
tasks of a complexity comparable to those encountered in
everyday situations (e.g. picking and placing objects on a
table).

Regrasping is a vital component in manipulation tasks.
Tournassoud, Lozano-Pérez, and Mazer [32] specifically
address this problem. They describe a method for plan-
ning a sequence of regrasp operations by a single arm to
change an initial grasp into a goal grasp. At every regrasp,
the object is temporarily placed on a horizontal table in a
stable position selected by the planner. We too need to plan
regrasp operations. However, the only regrasping motions
we consider avoid contact between the object and the envi-
ronment; they necessarily involve multiple arms (e.g. both
human arms).

Grasp planning is potentially an important component
of manipulation planning. In our planner, grasps are only
selected from a finite predefined set. An improvement for
the future will be to include the automatic computation of
grasps. A quite substantial amount of research has been
done on this topic. See [22] for a commented list of biblio-
graphical references.

Animation of Human Figures: Human gaits have been
successfully simulated. For example, Bruderlinand Calvert
[5] have proposed a hybrid approach to the animation of
human locomotion which combines goal-directed and dy-
namic motion control. McKenna and Zeltzer [21] have suc-
cessfully simulated the gait of a virtual insect by combin-
ing forward dynamic simulation and a biologically-based
motion coordination mechanism. Control algorithms have
been successfully applied to the animation of dynamic
legged locomotion [25]. While dynamic models and the
use of motor coordination models have been successfully
applied to a wide range of walking motions, such a strategy
has yet to be discovered to encompass human arm motions.

Figure 1. Planned path for manipulating eye glasses.

For simulating the motion of human arms, there exist
methods for specific tasks. For example, Lee et al. [17]
have focused on the simulation of arm motions for lifting
based on human muscle models.

Their method considers such factors as comfort level, per-
ceived exertion, and strength. Our approach is to simulate
natural arm motions from the point of view of kinematics,
that is we make no consideration of dynamics and muscle
models. We justify this approach in Section 5.

There has been previous work in applying motion plan-
ning algorithms to animating human figures. Ching and
Badler [6] present a motion planning algorithm for an-
thropometric figures with many degrees of freedom. Es-
sentially, they use a sequential search strategy to find a
collision-free motion of the figure to a specified goal con-
figuration. They do not consider manipulation or imposing
naturalness on the motions.

The AnimNL project at the University of Pennsylvania
[33] is working to automate the generation of human figure
movements from natural language instructions. Their focus
is mainly on determining the sequence of primitive actions
from a high-level description of the task. They utilize mod-
els to create realistic motions, however they do not consider
complex manipulation motions.

Neurophysiology: There are many scientists in psy-
chology and neurophysiology working to determine how
the human brain manages to coordinate the motion of its
limbs. Soechting [31] gives a good survey of various em-
pirical studies and their results for human arm motions.

One relevant finding is the sensorimotor transformation
model devised by Soechting and Flanders [29, 30]. They
found that the desired position of the hand roughly deter-
mines the arm posture. Our inverse kinematics algorithm
for the human arm is based on this result.

3 Manipulation Planner

In this section we present our manipulation planning algo-
rithm. The method applies to any system of arms as long
as they have an inverse kinematics solution.

3.1 Problem Statement

We now give a rather formal formulation of the multi-arm
manipulation planning problem. We consider only a single
movable object, but for the rest, our presentation is general.

The environment is a 3D workspace W with p arms Ai

(i � 1� � � � � p), a single movable object M, and q static
obstacles Bj (j � 1� � � � � q). The objectM can only move
by having one or several of the arms grasp and carry it to
some destination.

Let Ci and Cobj be the C-spaces (configuration spaces)
of the arms Ai and the object M, respectively [19, 16].

Each Ci has dimension ni, where ni is the number of
degrees of freedom of the arm Ai, and Cobj has dimen-
sion 6. The composite C-space of the whole system is
C � C1 � � � � � Cp � Cobj. A configuration in C, called
a system configuration, is of the form �q1� � � � � qp� qobj�,
with qi � Ci and qobj � Cobj.

We define the C-obstacle region CB � C as the set of
all system configurations where two or more bodies in
fA1� � � � �Ap�M�B1� � � � �Bqg intersect.2 We describe all
bodies as closed subsets ofW; hence, CB is a closed subset
of C. The open subset C n CB is denoted by Cfree and its
closure by cl�Cfree�.

For the most part we require that the arms, object, and ob-
stacles do not contact one another. However,Mmay touch
stationary arms and obstacles for the purpose of achieving
static stability. M may also touch arms when it is be-
ing moved. This is to achieve grasp stability and M can
only make contact with the end-effector of each grasping
arm (grasping may involve one or several arms). No other
contacts are allowed.

This leads us to define two subsets of cl�Cfree�:
- The stable space Cstable is the set of all legal configurations
in cl�Cfree�whereM is statically stable. M’s stabilitymay
be achieved by contacts between M and the arms and/or
the obstacles.
- The grasp space Cgrasp is the set of all legal configurations
in cl�Cfree� where one or several arms rigidly grasp M in
such a way that they have sufficient torque to move M.
Cgrasp � Cstable.

There are two types of paths, transit and transfer paths,
which are of interest in multi-arm manipulation:
- A transit path defines arm motions that do not move M.
Along such a pathM’s static stability must be achieved by
contacts with obstacles and/or stationary arms. Examples
of such a path involve moving an arm to a configuration
where it can graspM or moving an arm to change its grasp
of M. A transit path lies in the cross-section of Cstable
defined by the current fixed configuration ofM.
- A transfer path defines arm motions that move M. It
lies in the cross-section of Cgrasp defined by the attachment
of M to the last links of the grasping arms. During a
transfer path, not all moving arms need grasp M; some
non-grasping arms may be moving to allow the grasping
arms to move without collision.

A manipulation path is an alternate sequence of transit
and transfer paths that connects an initial system configura-
tion, qi

sys, to a goal system configuration, qgsys (see Fig. 2).
Some paths in this sequence may be executed concurrently
as long as this does not yield collisions.

2We regard joint limits in Ai as obstacles that only interfere with the
arms’ motions.

Grasp Space

Stable Space

Transit Path

Transfer Path
Grasp Space

Grasp Space

qi
sys

q
sys
g

cl(Cfree)

Figure 2. Components of a manipulation path and their
relation to the subspaces of cl�Cfree�.

In a multi-arm manipulation planning problem, the ge-
ometry of the arms, movable object, and obstacles is given,
along with the location of the obstacles. The goal is to
compute a manipulation path between two input system
configurations.

3.2 Planning Approach

We now describe our approach for solving the multi-arm
manipulation planning problem. This approach embeds
several simplifications. As a result the corresponding plan-
ner is not fully general. Throughout our presentation, we
carefully state the simplifications that we make. Some of
them illustrate the deep intricacies of multi-arm manipula-
tion planning.

Overview: A manipulation path alternates transit and
transfer paths. Each path may be seen as the plan for
a subtask of the total manipulation task. This yields the
following two-stage planning approach: first, generate a
series of subtasks to achieve the system goal configuration;
second, plan a transit or transfer path for each subtask. An
informal example of a series of subtasks is: grabM, carry
it to an intermediate location, change grasp, carry M to its
goal location, ungrasp.

Unfortunately, planning a series of subtasks that can later
be completed into legal paths is a difficult problem. How
can one determine whether a subtask can be completed
withoutactually completing it? We settle for a compromise.
Our approach focuses on planning a sequence of transfer
tasks that are guaranteed to be completed into transfer paths.
In fact, in the process of identifying these tasks, the planner
also generates the corresponding transfer paths. With the
transfer tasks specified, the transit tasks are immediately
defined: they link the transfer paths together along with the
initial and goal system configuration. It only remains to
compute the corresponding transit paths.

The assumption underlying this approach is that there
exists a legal transit path for every transit task. Actually, in
a 3D workspace, this is often the case. If the assumption is
not verified, the planner may try to generate another series

of transfer tasks, but in our current implementation it simply
returns failure.

Restrictions on grasps: To simplify the selection of
transfer tasks, we impose a restriction on grasps. The var-
ious possible grasps of M are given as a finite grasp set.
Each grasp in this set describes a rigid attachment of the
end-effector(s) of one or several arms with M. For ex-
ample, if M is considered too heavy or too bulky to be
moved by a single arm, each grasp in the grasp set may
indicate the need for a two-arm grasp. If the end-effector
consists of multi-joint fingers, their joint values to achieve
the particular grasp are specified.

Generating transfer tasks: The generation of the trans-
fer tasks is done by planning a path �obj ofM from its initial
to its goal configuration. During the computation of �obj,
all the possible ways of grasping M are enumerated and
the configurations ofM requiring a regrasp are identified.

The planner computes the path �obj so that M avoids
collision with the static obstacles Bj . This is done using
RPP (Randomized Path Planner), which is thus a component
of our planner. RPP is described in detail in [3, 16].

RPP generates �obj as a list of adjacent configurations
in a fine grid placed over Cobj (the 6D C-space of M), by
inserting one configuration after the other starting with the
initial configuration of M. The original RPP only checks
that each inserted configuration is collision-free. To en-
sure that there exists a sequence of transfer paths moving
M along �obj, we have modified RPP. The modified RPP
also verifies that at each inserted configuration, M can be
grasped using a grasp from the input grasp set. This is
done in the following way. A grasp assignment at some
configuration of M is a pair associating an element of the
grasp set defined for M and the identity of the grasping
arm(s). Note that the same element of the grasp set may
yield different grasp assignments involving different arms.
The planner enumerates all the grasp assignments at the ini-
tial configuration ofM and keeps a list of those which can
be achieved without collision between the grasping arm(s)
and the obstacles, and between the grasping arms should
there be more than one. We momentarily ignore the pos-
sibility that the grasping arm(s) may collide with the other
non-grasping arms. The list of possible grasp assignments
is associated with the initial configuration. Prior to insert-
ing any new configuration in the path being generated, RPP
prunes the list of grasp assignments attached to the previ-
ous configurationby removing all those which are no longer
possible at the new configuration. The remaining sublist,
if not empty, is associated with this configuration which is
appended to the current path.

If during a down motion of RPP (a motion along the
negated gradient of the potential field used by RPP) the
list of grasp assignments pruned as above vanishes at all

the successors of the current configuration (call it qobj),
the modified RPP resets the list attached to qobj to contain
all the possible grasp assignments at qobj (as we proceed
from the initial configuration). During a random motion (a
motion intended to escape a local minimum of the potential),
the list of grasp assignments is pruned but is constrained
to never vanish. In the process of constructing �obj , the
modified RPP may reset the grasp assignment list several
times.

If successful, the outcome of RPP is a path �obj described
as a series of configurations of M, each annotated with a
grasp assignment list. The path �obj is thus partitioned into
a series of subpaths, each connecting two successive con-
figurations. It defines as many transfer tasks as there are
distinct grasp assignments associated with it. By construc-
tion, for each such transfer task, there exists a transfer path
satisfying the corresponding grasp assignment. The num-
ber of regrasps along the generated path �obj is minimal,
but RPP does not guarantee that this is the best path in that
respect.

Details and comments: The condition that the same
grasp assignment be possible at two neighboring configu-
rations of M does not guarantee that the displacement of
M can be done by a short (hence, collision-free) motion
of the grasping arm(s). An additional test is needed when
the set of grasps between two consecutive configurations is
pruned. In our implementation, we assume that each arm
has an inverse kinematics solution. Thus, an arm can attain
a grasp with a finite set of different postures, determined by
using the arm’s inverse kinematics. We include the posture
of each involved arm in the description of a grasp assign-
ment. Hence the same combination of arms achieving the
same grasp, but with two different postures of at least one
arm, defines two distinct grasp assignments. Then a con-
figuration of M, along with a grasp assignment, uniquely
defines the configurations of the grasping arms. The res-
olution of the grid placed across Cobj is set fine enough
to guarantee that the motion between any two neighboring
configurations ofM results in a maximal arm displacement
smaller than some prespecified threshold.

In addition, we make considerations for sliding grasps.
Indeed, for some manipulation tasks, the object must be
allowed to slide in the grasp of the arms to achieve the goal.
For the grasp assignments in the grasp list, we identify their
feasible neighbors and add them to the list. A neighbor-
ing grasp assignment is one where the grasp location and
orientation is within some threshold distance from the orig-
inal grasp assignment, and the same arm(s) and posture(s)
is utilized. We choose a threshold distance that is small
enough to ensure that it is feasible to slide between neigh-
boring grasp assignments. By updating the grasp list in this
manner, directions where a sliding grasp is necessary can
then be explored during the search for an object path.

A transfer path could be obstructed by the arms not cur-
rently grasping M. Dealing with these arms can be par-
ticularly complicated. In our current implementation, we
assume that each arm has a relatively non-obstructive con-
figuration given in the problem definition (in the system
shown in Fig. 1, the given non-obstructive configuration of
each arm is when they are held out to the side). Prior to
a transfer path, all arms not involved in grasping M are
moved to their non-obstructive configurations. The plan-
ner nevertheless checks that no collision occurs with them
during the construction of �obj .

Perhaps the most blatant limitationof our approach is that
it does not plan for regrasps at configurations ofMwhere it
makes contact with obstacles (as we said, �obj is computed
free of collisions with obstacles). Since the object cannot
levitate, we require that M be held at all times during
regrasp. We assume that if M requires more than one
arm to move, any subset of a grasp is sufficient to achieve
static stability during the regrasp. For example, if a grasp
requires two arms, any one of these arms, alone, achieves
static stability, allowing the other arm to move along a
transit path. An obvious example where this limitation may
prevent our planner from finding a path is when the system
contains a single arm; no regrasp is then possible.

RPP is only probabilistically complete [3]. If a path exists
for M, it will find it, but the computation time cannot be
bounded in advance. Furthermore, if no path exists, RPP
may run forever. Nevertheless, for a rigid object (as is the
case for M), RPP is usually very quick to return a path,
when one exists. Hence, we can easily set a time limit
beyond which it is safe to assume that no path exists.

RPP requires a postprocessing step to smooth the jerky
portions of the path, due to the random walks. Other path
planners could possibly be used in place of RPP.

Generation of transit paths: The transfer tasks iden-
tified as above can be organized into successive layers, as
illustrated in Fig. 3. Each layer contains all the transfer tasks
generated for the same subpath of �obj ; the transfer tasks
differ by the grasp assignment. Selecting one such task in
every layer yields a series of transit tasks: the first consists
of achieving the first grasp from the initial system config-
uration; it is followed by a possibly empty series of transit
tasks to change grasps between two consecutive transfer
tasks; the last transit task is to achieve the goal system con-
figuration. Hence, it remains to identify a grasp assignment
in each layer of the graph shown in Fig. 3, such that there
exist transit paths accomplishing the corresponding transit
tasks.

qi
sys

q
sys
g

Nodes corresponding
to SubPath A

Nodes corresponding
to SubPath B

Root Node

Goal Node

A link can be constructed
 between nodes

Transfer Task

2

Transfer Task

1A A

Transfer Task

2

Transfer Task

1B B

Figure 3. The directed and layered graph.

Assume without loss of generality that all arms are ini-
tially at their non-obstructive configurations. Our planner
first chooses an arbitrary transfer task in the first layer.
Consider the transit task of going from the initial system
configuration to the configuration where the arms achieve
the grasp assignment specified in the chosen transfer task,
withM being at its initial configuration. The coordinated
path of the arms is generated using RPP. If this fails, a new
attempt is made with another transfer task in the first layer;
otherwise, a transfer task is selected in the second layer.
The connection of the system configuration at the end of
the first transfer task to the system configuration at the start
of this second transfer task forms a new transit task.

The transit task between two transfer tasks is more dif-
ficult to solve. Actually, the difficulty arises when an un-
grasp/regrasp is required. If the initial and goal grasp as-
signments are neighbors, then we simply slide the grasp.
To understand the difficulty of the case where an un-
grasp/regrasp is required, imagine the situation where M
is a long bar requiring two arms to move. Assume that
the system contains only two arms and that the bar can
be grasped at its two ends and at its center. Consider the
situation where the bar is grasped at its two ends and the
regrasp requires swapping the two arms. This regrasp is not
possible without introducing an intermediate grasp. For
example: arm 1 will ungrasp one end of the bar and regrasp
it at its center (during this regrasp, arm 2 will be holding
the bar without moving); then arm 2 will ungrasp the bar
and regrasp it at the other end; finally, arm 1 will ungrasp
the center of the bar and will regrasp it at its free end.

We address this difficulty by breaking the transit task be-
tween two transfer tasks into smaller transit subtasks. Each
transit subtask consists of going from one grasp assignment
to another in such a way that no two arms use the same
grasp at the same time. In this process, we allow arms not
involved in the first and last assignment to be used. We
start with the first grasp assignment and generate all of the
potential grasp assignments that may be achieved from it

(assuming the corresponding transit paths exist). We gen-
erate the successors of these new assignments, and so on
until we reach the desired assignment (the one used in the
next transfer task). For each sequence that achieves this
desired assignment, we test that it is actually feasible by
using RPP to generate a transit path between every two suc-
cessive grasp assignments. We stop as soon as we obtain a
feasible sequence. The concatenation of the corresponding
sequence of transit paths forms the transit path connecting
the two considered transfer tasks. We then proceed to link
to the next layer of transfer tasks.

When we reach a transfer path in the last layer, its con-
nection to the goal system configuration is carried out in the
same way as the connection of the initial system configura-
tion to the first layer.

The result is an alternating sequence of transit and trans-
fer paths that connects the initial configuration q i

sys to the
goal configuration qg

sys.

4 Human-Arm Kinematics

We now outline the method by which we determine the arm
posture for a human arm given the position and orientation
of its hand. We present the algorithm using the right arm
for illustration purposes. We assume that the torso and the
shoulder positions are given.

The algorithm is based on two results from neurophysiol-
ogy. The first result has to do with decoupling the problem
into two more manageable subproblems. Lacquaniti and
Soechting have shown that the arm and wrist posture are
for the most part independent of each other [14]. This
allows us to decouple the problem into finding first, the
forearm and upper arm posture to match the hand position,
and then determining the joint angles for the wrist to match
the hand orientation. This is exactly the approach taken in
solving the inverse kinematics of a robot manipulator with
six degrees of freedom and whose wrist joints intersect at a
point [23].

It is also known in neurophysiology that the arm posture
for pointing is mainly determined by a simple sensorimotor
transformation model. Soechting and Flanders [29, 30]
conducted experiments where the test subject was instructed
to move the end of a pen-sized stylus to various targets in
their vicinity. From this study, they have devised a model
that determines the posture of the forearm and upper arm
given the position of the end of the stylus. We use this
model to determine the shoulder and elbow joint angles
given the position of the hand. Then, determining the wrist
joint angles is a simple additional step.

4.1 Arm posture

Using the sensorimotor transformation model of Soechting
and Flanders [29, 30] we determine the arm posture given
the location of the hand. To explain their model we first
define some generalized coordinates.

Denote the coordinate frame centered on the shoulder as
the shoulder frame. The x-axis is along the line that con-
nects the two shoulders, the y-axis is parallel to the outward
normal from the chest, and the z-axis points upwards to-
wards the head. The parameters for the elevation and yaw
of the upper arm are � and �, respectively, and the parame-
ters for the elevation and yaw of the forearm are � and �,
respectively. The position of the wrist (or hand frame) is
expressed in terms of the spherical coordinates, azimuth �,
elevation �, and radial distance R. The spherical coordi-
nates are related to the cartesian coordinates of the shoulder
frame by the equations

��
�

R2 � x2 � y2 � z2

tan� � x�y

tan� � z�
p

x2 � y2
�1�

These arm parameters are illustrated in Fig. 4.

�

�

�

�

R

� �

Shoulder

Elbow

Wrist

LateralAnterior

z

x

y

Figure 4. The parameters for the arm posture

The sensorimotor transformation model suggests that the
parameters for arm posture are approximated by a linear
mapping from the spherical coordinates of the hand frame
(actually, Soechting and Flanders report this mapping from
the position of the end of the stylus held by the test subject,
but we simplify this to the hand). The relation is

����
���

� � �4	0� 1	10R� 0	90�
� � 39	4� 0	54R� 1	06�
� � 13	2� 0	86�� 0	11�
� � �10	0� 1	08�� 0	35�

�2�

where the units of measure are centimeters and degrees.
Since this is only an approximation, plugging the arm pos-
ture parameters back into the forward kinematics of the
arm results in a positional error of the hand frame. This is
compensated for in the final stage of the inverse kinematics
algorithm.

Once the generalized coordinates �, �, �, and � are ob-
tained, they are transformed into the four joint angles of
the forearm and the upper arm. We check to see if they
violate any of their limits. If they are within their limits we
proceed to find the wrist joint angles. In the event that a
limit is violated (an illegal posture), an adjustment phase is
initiated.

For an illegal posture obtained from Eq. 2, it turns out
that the joint angle
 (the rotation around the upper arm as
shown in Fig. 5) is the only one to violate its limits. We
correct for this in the following manner. Consider a new
set of generalized coordinates of the arm, consisting of the
wrist position and the angle � (the rotation of the elbow
around the axis between the shoulder and wrist as shown
in Fig. 5). By decreasing the value of � from the initial
illegal posture (moving the elbow upward),
 will move
back into the feasible joint range without ever changing the
wrist position. Note that
 is obtained by transforming the
wrist position and � into the joint angles of the arm.

�

Shoulder

Elbow

Wrist

LateralAnterior

Horizontal reference vectory

x

z

Figure 5. The elbow and shoulder rotation.

To summarize, the arm posture is estimated in the fol-
lowing way:

1. The arm posture is obtained using the transformation
of Eq. 2.

2. The values for
 and � are calculated.

3. If
 violates its joint limit, then � is decreased until the
corresponding
 satisfies its joint limit.

4.2 Wrist joints

The next step is to obtain the joint angles for the wrist.
We assume that the three wrist joint angles intersect at

a point, consequently their values can be determined using
basic inverse kinematics techniques. If the resulting wrist
angles violate their limits, we adjust the posture of the arm
until a feasible joint value is obtained. As before, this is
achieved by incremently changing the angle � (rotation of
the elbow) until either a feasible solution is obtained or we
have exhausted the possible values for �. In the case where
this step fails, we take the closest feasible answer to the
desired hand orientation and proceed to the final adjustment
step.

4.3 Final adjustment

The final step is to adjust the joint angles such that the
exact position and orientationof the hand is obtained (recall
that the sensorimotor transformation model leaves the hand
position slightly off from the desired location). Let e be the
6 � 1 vector containing the position and orientation error
of the hand frame, and q be the 7 � 1 vector of arm joint
angles. The relation between these two vectors is

e � J�q�q̇ �3�

where J�q� is the 6 � 7 Jacobian matrix. By solving for q̇
we can iteratively change the joint angles to zero the error.

This simultaneous equation has only six linear con-
straints, thus resulting in an infinite number of solutions.
We remedy this situation by utilizing a solution of Eq. 3
expressed as

q̇ � q̇0 � r n �4�

where q̇0, r, and n are respectively, an instance of q̇, a scalar
parameter, and the null space of Eq. 3. In this case, the null
space is one dimensional and is expressed by the multipli-
cation of the scalar r and its basis vector n. We employ a
constrained optimization to select the q̇ which minimizes its
norm while satisfying the arm joint limits. The joint angles
are then incrementally adjusted accordingly. This ensures
that the modification to the hand position and orientation
occurs with minimal joint movement. This procedure is
iteratively applied until the desired position and orientation
of the hand is obtained. The resulting joint angles com-
prise the posture of the arm for the given hand position and
orientation.

The algorithm does not return an answer if the hand frame
is out of the workspace of the arms, or if the method fails
to correct for a set of joint angles which violates its limits.

5 Natural Motion

The multi-arm manipulation planner works regardless of
whether the arms are human or robotic. In its most ba-
sic state, there is no consideration of producing realistic
motions for the arms. Only kinematic constraints are rec-
ognized, for example: requiring the motion to be collision
free and allowing the arms to grasp the movable object at
all times.

However, for the purpose of computer animation the mo-
tions must appear natural. For robot arms, since they are
undeniably artificial, there is no notion of what comprises
natural movement. Though we may need to time parame-
terize their path to yield realistic animation (i.e. reasonable
acceleration and decceleration of the arms) there is no need
to impose a naturalness constraint on the planner. In con-
trast, for human arms there is clearly a natural manner in
which they move. Fortunately, neurophysiology gives us a
reference to which we can compare our methods and results
with experimental data on human motions. In this section,
we discuss how our planner with the human-arm inverse
kinematics satisfies applicable naturalness constraints one
derives from neurophysiology.

Dynamics versus Kinematics: We make no consider-
ation of dynamics in our planning. From the neurophysio-
logical viewpoint this is not a problem. It is widely agreed
upon that arm movement is represented kinematically [26].
It is then a postprocessing step, where the dynamics or mus-
cle activation patterns are determined. With our method,
by applying the appropriate time parameterization to the
planned path [8, 1] one can emulate results found in neuro-
physiology. However, this is not done in our current planner
yet.

Inverse Kinematics: The sensorimotor transformation
model is derived from static arm postures. To verify that our
inverse kinematics algorithm is applicable to manipulation
motions, we consider the experimental results of Soechting
and Terzuolo [27]. Their experiment is for curvilinear wrist
motions in an arbitrary plane. They find that humans exhibit
the following behavior:

1. The modulation in the elevation and yaw angles of the
upper arm and forearm (�, �, �, and �) are close to
sinusoidal.

2. The phase difference between � and � is 180�, at least
for elevation angles of the plane between 0� and 45�.

3. The phase difference between � and � is close to
180� � �, where � is the slant parameter describing
the curvilinear wrist motion.

We reproduced their experiment by tracing curvilinear wrist
motions and generating the arm parameters using the human
arm inverse kinematics algorithm. Our finding is that the

computed and experimental values match quite nicely. We
refer the reader to [13] for a detailed explanation. Further-
more, Soechting and Terzuolo find that for learned trajec-
tories, their results for curvilinear wrist motions in a plane
hold true in three-dimensional space [28]. We justify the
use of our inverse kinematics algorithm for manipulation
planning based on these experimental results. Note, we do
not claim that the posture found by our algorithm is the only
one that is natural. Clearly, there are other postures that hu-
mans assume depending upon the situation. For example,
the redundant degree of freedom could be used to posture
the arm such that it avoids obstacles. By having a library
of different inverse kinematics algorithms for human arms,
the planner could consider a variety of natural postures for
a given hand position and orientation.

Point to Point Arm Motion: When the arms move to
grasp or regrasp an object, the planning is done in the joint
space of the arms. Since RPP is utilized to find the path,
postprocessing is required to transform the collision free
but jerky motion into a smooth one (the jerky motion is due
to the random walks utilized by RPP). This smoothing is
achieved by attempting to shorten the path by interpolating
between its points. The result is essentially a piece-wise
joint interpolated path. Hollerbach and Atkeson speculate
that the underlying planning strategy for such arm motions
is a staggered joint interpolation [10]. Staggered joint inter-
polation is a generalization of joint interpolation introduced
by Hollerbach and Atkeson to fit a greater range of exper-
imental data. We have yet to implement a staggered joint
interpolation scheme for the “smoother”, but at present we
are content with the arm motionsproduced thus far (i.e. joint
interpolation appears to be a close enough approximation).

We were unable to find any studies on human regrasping.
Thus, no comment can be made on how reasonable the
planning strategy is from this viewpoint.

6 Experimental Results

We implemented the above approach in a planner written in
C and running on a DEC Alpha workstation under UNIX.
Experiments were conducted with a seated human figure
and a robot arm. Each human arm has seven degrees of
freedom, plus an additional nineteen degrees of freedom
for each hand. The non-obstructive configurations for the
human arms are ones in which they are held out to the
side. The robot has six revolute joints and three degrees of
freedom for the end-effector. The non-obstructive configu-
ration for the robot is one in which it stands vertically. In
addition, we seat the human on a swivel chair. By adding
this extra degree of freedom, we allow the arms to access
a greater region, and hence tackle more interesting manip-
ulation tasks. The rotation of the chair tracks the object to

keep it, essentially, in an optimal position with respect to
the workspace of the arms [20].

Fig. 1 shows a path generated by the planner for the
human arms to bring the glasses on the table to the head
of the human figure. We specify that both arms should be
used to manipulate the glasses (this is defined in the grasp
set). Notice that during the regrasping phase, at least one
arm is holding the glasses at all times. For this path it took
one minute to identify the transfer tasks and an additional
two minutes to complete the manipulation path. For the
generation of �obj , the object’s C-space was discretized
into a 100� 100� 100 grid. For the generation of the
transit paths, the joint angles of the arms were discretized
into intervals of 0.05 radians. The grasp set contained
212 grasps, yielding grasp assignment lists with up to 424
elements.

Fig. 6 shows a path generated by the planner for the
human arms and the robot arm cooperating to manipulate
a chess box. Having the different arms working together
presents no difficulty to our planning approach. The plan-
ner simply needs to know the correct inverse kinematics
algorithm to apply to each arm. For this example, in defin-
ing the grasp set, we specify two classes of grasps, one in
which all three arms are used, and another in which only
the two human arms are utilized. For this path it took about
one and a half minutes to identify the transfer tasks and an
additional two minutes to complete the manipulation path.
The same discretizations as above were used. The grasp set
of the box contained 289 grasps yielding grasp assignment
lists with up to 2600 elements.

For manipulation planning with human arms, our current
implementation is unable to plan motions where the arms
are required to use their redundant degree of freedom to
avoid obstacles. For example, a task where the arms must
place an object deep into a tight box is almost impossible
for our planner. The reason is simply that the sensorimotor
transformationmodel does not consider obstacle avoidance.
To tackle this class of problem, we will need to devise
another inverse kinematics algorithm that does utilize the
redundant degree of freedom for the purpose of avoiding
obstacles. Again, some sort of naturalness constraint would
need to be satisfied.

For these examples, in computing the transit paths RPP
uses the sum of the angular joint distances to the goal con-
figuration as the guiding potential. Note that the motion of
the fingers for the human and the robot are considered in the
transit paths (in moving from one grasp to another the fin-
gers may change their posture). In computing�obj RPP uses
an NF2-based potential with three control points [16]. In
finding both the transit paths and �obj , we limit the amount
of computation spent in RPP to three backtrack operations
[16], after which the planner returns failure. Failure to find
�obj results in the immediate failure to find a manipulation

Figure 6. Planned path for human/robot arm cooperative manipulation.

path. Similarly, a failure to find transit paths to link to-
gether the layers of transfer paths results in a failure to find
a manipulation path. The time for the planner to report fail-
ure depends on the problem, with some examples ranging
from 30 seconds to a few minutes. The collision checking
algorithm utilized is that of Quinlan [24].

7 Conclusion

We have presented a novel approach for solving the com-
plicated multi-arm manipulation planning problem. Our
approach embeds several simplifications yielding an imple-
mented planner that is not fully general. However, exper-
iments with this planner show that it is quite reliable and
efficient in finding manipulation paths, when such paths
exist, making it suitable as part of an interactive tool to
facilitate the animation of scenes. We believe the robust
nature of the planner is the result of careful consideration
of the general manipulation problem, the introduction of
reasonable simplifications, and the appropriate utilization
of the efficient randomized path planner.

We have also presented a new inverse kinematics algo-
rithm for human arms based on neurophysiological studies.
This algorithm, in conjunction with the planner, automat-
ically generates natural arm motions for a human figure
manipulating an object.

In the future we hope to include the ability to regrasp
the movable object by having the arms place it in a stable
configuration against some obstacles. We also plan to use
existing results to automatically compute the grasp set of an
object from its geometric model. The technique described
in [11] to deal with multiple movable objects in a 2D space
should also be applicable to our planner. Furthermore,
we hope to time parameterize the motion paths to yield
realistic velocities, by implementing one of the many such
algorithms for robot and human arms [8, 1, 4]. Finally,
we hope to explore and devise other inverse kinematics
algorithms for the arms, as well as incorporating twisting
and bending of the torso. Ultimately, we aim to create a
task-level animation package for human motions.

Acknowledgments

Y. Koga is supported in part by a Canadian NSERC fellow-
ship. The use of Sean Quinlan’scollision checking software
is gratefully acknowledged.

References

[1] Atkeson, Christopher and Hollerbach, John. Kine-
matic Features of Unrestrained Arm Movements. MIT
AI Memo 790, 1984.

[2] Baraff, David. Analytical Method for Dynamic Simu-
lation of Non-Penetrating Rigid Bodies. Proceedings
of SIGGRAPH’89 (Boston, Massachusetts, July 31 -
August 4, 1989). In Computer Graphics 23, 3 (July
1989), 223-232.

[3] Barraquand, Jerome and Latombe, Jean-Claude.
Robot Motion Planning: A Distributed Representa-
tion Approach. Int. J. Robotics Research, 10(6), De-
cember 1991, 628-649.

[4] Bobrow, J.E., Dubowsky, S., Gibson, J.S. Time-
Optimal Control of Robotic Manipulators Along
Specified Paths. Int. J. Robotics Research, Vol. 4, No.
3, 1985, 3-17.

[5] Bruderlin, Armin and Calvert, Thomas. Goal-directed,
dynamic animation of human walking. Proceedings
of SIGGRAPH’89 (Boston, Massachusetts, July 31 -
August 4, 1989). In Computer Graphics 23, 3 (July
1989), 233-242.

[6] Ching, Wallace and Badler, Norman. Fast motion
planning for anthropometric figures with many de-
grees of freedom. Proc. 1992 IEEE Int. Conf. on
Robotics and Automation, Nice, France, 1992, 2340-
2345.

[7] Ferbach, Pierre and Barraquand, Jerome. A Penalty
Function Method for Constrained Motion Planning.
Rep. No. 34, Paris Research Lab., DEC, Sept. 1993.

[8] Flash, T. and Hogan, N. The Coordination of Arm
Movements: An Experimentally Confirmed Mathe-
matical Model. MIT AI Memo 786, 1984.

[9] Hahn, James K. Realistic Animation of Rigid Bod-
ies. Proceedings of SIGGRAPH’88 (Atlanta, Geor-
gia, August 1-5, 1988). In Computer Graphics 22, 4
(August 1988), 299-308.

[10] Hollerbach, John and Atkeson, Christopher. Deducing
Planning Variables from Experimental Arm Trajecto-
ries: Pitfalls and Possibilities. BiologicalCybernetics,
56(5), 1987, 279-292.

[11] Koga, Y., Lastennet, T., Latombe, J.C., and
Li, T.Y. Multi-Arm Manipulation Planning. Proc. 9th
Int. Symp. Automation and Robotics in Construction,
Tokyo, June 1992, 281-288.

[12] Koga, Yoshihito. On Computing Multi-Arm Manipu-
lation Trajectories. Ph.D. thesis, Stanford University
(in preparation).

[13] Kondo, Koichi. Inverse Kinematics of a Human Arm.
Rep. STAN-CS-TR-94-1508, Department of Com-
puter Science, Stanford University, CA, 1994.

[14] Lacquaniti, F. and Soechting, J.F. Coordination of Arm
and Wrist Motion During A Reaching Task. The Jour-
nal of Neuroscience, Vol. 2, No. 2, 1982, 399-408.

[15] Laumond, Jean-Paul and Alami, Rachid. A Geomet-
rical Approach to Planning Manipulation Tasks: The
Case of a Circular Robot and a Movable Circular
Object Amidst Polygonal Obstacles. Rep. No. 88314,
LAAS, Toulouse, 1989.

[16] Latombe, Jean-Claude. Robot Motion Planning.
Kluwer Academic Publishers, Boston, MA, 1991.

[17] Lee, P., Wei, S., Zhao, J., and Badler, N.I. Strength
guided motion. Proceedings of SIGGRAPH’90 (Dal-
las, Texas, August 6-10, 1990). In Computer Graphics
24, 4 (August 1990), 253-262.

[18] Lengyel, J., Reichert, M., Donald, B.R., and Green-
berg, D.P. Real-Time Robot Motion Planning Using
Rasterizing Computer Graphics Hardware. Proceed-
ings of SIGGRAPH’90 (Dallas, Texas, August 6-10,
1990). In Computer Graphics 24, 4 (August 1990),
327-335.

[19] Lozano-Pérez, Tomas. Spatial Planning: A Configu-
ration Space Approach. IEEE Tr. Computers, 32(2),
1983, pp. 108-120.

[20] McCormick, E.J. and Sanders, M.S. Human Factors
in Engineering and Design. McGraw-Hill Book Com-
pany, New York, 1982.

[21] McKenna, Michael and Zeltzer, David. Dynamic sim-
ulation of autonomous legged locomotion. Proceed-
ings of SIGGRAPH’90 (Dallas, Texas, August 6-10,
1990). In Computer Graphics 24, 4 (August 1990),
29-38.

[22] Pertin-Troccaz, Jocelyn. Grasping: A State of the Art.
In The Robotics Review 1, O. Khatib, J.J. Craig, and
T. Lozano-Pérez, eds., MIT Press, Cambridge, MA,
1989, 71-98.

[23] Pieper, D. and Roth, B. The Kinematics of Manip-
ulators Under Computer Control. Proceedings of the
Second International Congress on Theory of Machines
and Mechanisms, Vol. 2, Zakopane, Poland, 1969,
159-169.

[24] Quinlan, Sean. Efficient Distance Computation Be-
tween Non-Convex Objects. To appear in Proc. 1994
IEEE Int. Conf. on Robotics and Automation, San
Diego, CA, 1994.

[25] Raibert, Marc and Hodgins, Jessica. Animation of
Dynamic Legged Locomotion. Proceedings of SIG-
GRAPH’91 (Las Vegas, Nevada, July 28 - August

2, 1991). In Computer Graphics 25, 4 (July 1991),
349-358.

[26] Smith, A.M. et al. Group Report: What Do Studies of
Specific Motor Acts Such as Reaching and Grasping
Tell Us about the General Principles of Goal-Directed
Motor Behaviour? Motor Contro: Concepts and Is-
sues, D.R Humphrey and H,J, Freund, eds., John Wi-
ley and Sons, New York, 1991, 357-381.

[27] Soechting, J.F. and Terzuolo, C.A. An Algorithm for
the Generation of Curvilinear Wrist Motion in an
Arbitrary Plane in Three Dimensional Space. Neu-
roscience, Vol. 19, No. 4, 1986, 1393-1405.

[28] Soechting, J.F. and Terzuolo, C.A. Organization of
Arm Movements in Three Dimensional Space. Wrist
Motion is Piecewise Planar. Neuroscience, Vol. 23,
No. 1, 1987, 53-61.

[29] Soechting, J.F. and Flanders, M. Sensorimotor Rep-
resentations for Pointing to Targets in Three Dimen-
sional Space. Journal of Neurophysiology, Vol. 62,
No. 2, 1989, 582-594.

[30] Soechting, J.F. and Flanders, M. Errors in Pointing
are Due to Approximations in Sensorimotor Transfor-
mations. Journal of Neurophysiology, Vol. 62, No. 2,
1989, 595-608.

[31] Soechting, J.F. Elements of Coordinated Arm Move-
ments in Three-Dimensional Space. Perspectives on
the Coordination of Movement, edited by S.A. Wal-
lace, Elsevier Science Publishers, Amsterdam, 1989,
47-83.

[32] Tournassoud, P., Lozano-Pérez, T., and Mazer, E. Re-
grasping. Proc. IEEE Int. Conf. Robotics and Automa-
tion, Raleigh, NC, 1987, 1924-1928.

[33] Webber, B., Badler, N., Baldwin, F.B., Beckett, W.,
DiEugenio, B., Geib, C., Jung, M., Levinson, L.,
Moore, M., and White, M. Doing what you’re told:
following task instructions in changing, but hospitable
environments. SIGGRAPH ’93 Course note 80 “Re-
cent Techniques in Human Modeling, Animation and
Rendering”, 1993, 4.3-4.31.

[34] Wilfong, G. Motion Planning in the Presence of Mov-
able Obstacles. Proc. 4th ACM Symp. Computational
Geometry, 1988, 279-288.

