
Goal-Directed Navigation for Animated
Characters Using Real-Time Path Planning and

Control

James J. Kuffner, Jr

Computer Science Robotics Lab, Stanford University
Stanford, CA 94305-9010, USA,

kuffner@stanford.edu,
http://robotics.stanford.edu/~kuffner/

IN THE PROCEEDINGS OF CAPTECH’98, NOVEMBER 1998

Abstract. This paper presents a new technique for computing collision-
free navigation motions from task-level commands for animated human
characters in interactive virtual environments. The algorithm imple-
mentation utilizes the hardware rendering pipeline commonly found on
graphics accelerator cards to perform fast 2D motion planning. Given a
3D geometric description of an animated character and a level-terrain
environment, collision-free navigation paths can be computed between
initial and goal locations at interactive rates. Speed is gained by leverag-
ing the graphics hardware to quickly project the obstacle geometry into
a 2D bitmap for planning. The bitmap may be searched by any number
of standard dynamic programming techniques to produce a final path.
Cyclic motion capture data is used along with a simple proportional
derivative controller to animate the character as it follows the computed
path. The technique has been implemented on an SGI Indigo2 worksta-
tion and runs at interactive rates. It allows for real-time modification
of the goal locations and obstacle positions for multiple characters in
complex environments composed of more than 15,000 triangles.

1 Introduction

Advances in computing hardware, software, and network technology have en-
abled a new class of interactive applications involving 3D animated characters
to become increasingly feasible. Many such applications require algorithms that
enable animated characters to move naturally and realistically in response to
task-level commands. This paper addresses the problem of quickly synthesiz-
ing from navigation goals the collision-free motions for animated human figures
in changing virtual environments. The method presented here combines a path
planner, a path-following controller, and cyclic motion capture data. The result-
ing animation can be generated at interactive rates and looks fairly realistic.
This work is part of a larger project to build autonomous animated characters
equipped with motion planning capabilities and simulated sensing[1]. The ulti-
mate goal of this research is to create animated agents able to respond to task-
level commands and behave naturally within changing virtual environments.

A prolific area of research in the robotics literature has been the design and
implementation of task-level motion planning algorithms for real-world robotic
systems[2]. The inspiration for the fundamental ideas in this paper arises from
this research. Section 2 provides a background and motivation for task-level con-
trol in the context of animation. Related work in building autonomous agents for
the purposes of graphic animation is summarized in Section 3. Section 4 describes
an approach for computing goal-directed navigation motions for animated hu-
man figures. Section 5 gives an overview of the algorithm, while Section 6 and
Section 7 describe in greater detail the path planning and path following phases
of the approach respectively. In Section 8 the current implementation and per-
formance results are presented. Section 9 concludes with a discussion of the
limitations and possible extensions to the ideas presented here.

2 Motivation

The primary motivation for task-level control in animation stems from the time
and labor required to specify motion trajectories for complex multi-jointed char-
acters, such as human figures. Traditional keyframe animation techniques are
extremely labor-intensive and often yield motion that looks unrealistic or is phys-
ically invalid. Motion capture techniques offer a simple alternative for obtaining
realistic-looking motion. Unfortunately, both keyframed-motion and motion cap-
ture data alone are inflexible in the sense that the motion is often only valid for
a limited set of situations. Frequently, such motions must be redesigned if the
locations of other objects or starting conditions change even slightly. Motion
warping or blending algorithms[3, 4] offer some added flexibility, but usually can
only be applied to a limited set of situations involving minor changes to the envi-
ronment or starting conditions. Significant changes typically result in unrealistic
motions.

Dynamic simulation and physically-based modeling techniques nicely handle
the problems of physical validity and applicability to arbitrary situations. Given
initial positions, velocities, forces, and dynamic properties, an object’s motion is
simulated according to natural physical laws[5, 6]. However, aside from specifying
initial conditions, the user has no control over both the resulting motion and
the final resting position of the object. Spacetime constraints provide a more
general mathematical framework for addressing this problem of control [7, 8,
9]. Constraint equations imposed by the initial and final conditions, obstacle
boundaries, and other desired properties of the motion are solved numerically.
Unfortunately, the large number of constraints imposed by complex obstacle-
cluttered environments can severely degrade the performance of such methods.

New approaches and algorithms are needed to compute natural, collision-
free motions quickly in changing virtual environments. The method described in
this paper combines a fast 2D path planner along with a proportional derivative
(PD) controller to compute natural-looking motions for navigation tasks. The
controller is used to synthesize cyclic motion capture data for an animated char-
acter as it follows a computed path towards a goal location. The goal location

can be can be user-specified or defined by a behavior script. The implemented
planner executes in roughly one-tenth of one second on average, thus allowing
real-time modification of the goal location or obstacle positions.

3 Related Work

Previous work in motion synthesis for animated characters has traditionally been
divided between real-time applications and off-line animation production. How-
ever, as processor speeds continue to increase, algorithms originally intended for
off-line animations will gradually become feasible in real-time virtual environ-
ments.

Much research effort in robotics has been focused on designing control ar-
chitectures for autonomous agents that operate in the real world[10, 11]. Using
rasterizing computer graphics hardware to assist robot motion planning algo-
rithms was previously investigated by Lengyel, et al [12]. Recently, motion plan-
ning tools and algorithms have been applied to character animation. Koga et
al. combined motion planning and human arm inverse kinematics algorithms
for automatically generating animation for human arm manipulation tasks[13].
Hsu and Cohen combined path planning with motion capture data to animate
a human figure navigating on uneven terrain [14]. Researchers at the University
of Pennsylvania have been exploring the use of motion planning to achieve pos-
tural goals using their Jack human character model[15, 16], incorporating body
dynamics[17], and high-level scripting[18].

Research in designing fully-autonomous, interactive, artificial agents has also
been on the rise. Tu and Terzopoulos implemented a realistic simulation of au-
tonomous artificial fishes, complete with integrated simple behaviors, physically-
based motion generation, and simulated perception[19]. Noser, et al. proposed
a navigation system for animated characters based on synthetic vision, mem-
ory and learning[20]. Other systems include Perlin and Goldberg’s Improv soft-
ware for interactive agents[21, 22], the ALIVE project at MIT[23, 24], Johnson’s
WavesWorld, and perhaps one of the earliest attempts at creating an agent ar-
chitecture for the purposes of graphic animation: the Oz project at CMU[25].
The goals of the Oz project were to create agents with “broad” but “shallow”
capabilities, rather than “deep” capabilities in a narrow area. Researchers at
Georgia Tech have combined physically-based simulation with group behaviors
for simulating human athletics[26]. They have also designed a controller for hu-
man running in 3D[27]. Despite these achievements, building autonomous agents
that respond intelligently to task-level commands remains an elusive goal, par-
ticularly in real-time applications.

4 Goal-Directed Navigation

Consider the case of an animated human character given the task of moving
from one location to another in a flat-terrain virtual environment. One would
like to produce a reasonable set of motions to accomplish the task while avoiding

obstacles and other characters in the environment. Our strategy will be to divide
the computation into two phases: path planning and path following. The plan-
ning phase computes a collision-free path to the goal location using the graphics
hardware for speed, while the path following phase uses a proportional deriva-
tive (PD) controller to guide the character’s motion along the path. The path
planning phase should run very quickly, since the locations of other characters
or objects in the environment may change without warning. Such changes may
invalidate the collision-free nature of the current path being followed, and neces-
sitate re-planning. The controller should be fast and flexible enough to allow the
current path being followed to be replaced without warning, and still generate
smooth motions.

5 Algorithm Overview

Initialization: A general 3D description of the environment and characters suitable for
rendering is provided, along with a goal location. Motion capture data for
a single cycle of a locomotion gait along a straight line is pre-processed as
described in Section 7.2.

Projection: The planning phase begins by performing an off-screen projection of the en-
vironment geometry into a 2D bitmap. An orthographic camera is positioned
above the environment, pointing down along the negative normal direction
of the walking surface. The near clipping plane of the camera is set to cor-
respond to the maximum vertical extent of the character’s geometry, and
the far clipping plane is set to be slightly above the walking surface. All
geometry within the given height range is projected (rendered) to either the
back buffer or an offscreen bitmap via the graphics hardware.

Path Search: The bitmap from the previous step is searched directly for a collision-free
path using any standard dynamic programming technique. Examples in-
clude Dijkstra’s algorithm, or A* with some appropriate heuristic function.
If planning is successful, the complete path is sent to the path following
phase. Otherwise, the controller is notified that no path exists.

Path Following: Cyclic motion capture data along with a PD controller on the position and
velocity is used to generate the final motion for the character as it tracks the
computed path. If no path exists, an appropriate stopping motion or waiting
behavior is performed.

6 Path Planning

The theory and analysis of motion planning algorithms is fairly well-developed
in the robotics literature, and is not discussed in detail here. For a broad back-
ground in motion planning, readers are referred to [2]. For any motion planning,
it is important to minimize the number of degrees of freedom (DOFs), since the
time complexity of known algorithms grows exponentially with the number of

DOFs[28]. For character navigation on level-terrain, the important DOFs are
the position and orientation (x, y, θ) of the base of the character on the walking
surface. As detailed in Section 7, the orientation (forward-facing direction) of the
character is computed by the controller during the path following phase. Thus,
we need only to consider the position (x, y) of the base of the character during
the planning phase. Bounding the character’s geometry by a cylinder allows mo-
tion planning for level-terrain navigation to be reduced to planning collision-free
trajectories for a circular disk in 2D. Figure 1 shows one of the characters used
in our experiments along with the computed bounding cylinder.

Bounding Cylinder
Hips(6)

 LeftHip(3)

 LeftKnee(1)

 LeftAnkle(3)

 RightHip(3)

 RightKnee(1)

 RightAnkle(3)

 Chest(3)

 LeftShoulder(3)

 LeftElbow(1)

 LeftWrist(3)

 RightShoulder(3)

 RightElbow(1)

 RightWrist(3)

 Neck(3)

 Head(3)

Fig. 1. The character’s geometry is bounded by an appropriate cylinder. This effec-
tively reduces the navigation problem to one involving motion planning for a circular
disc among obstacles in 2D. The character’s joint hierarchy is shown, along with the
number of DOF for each joint.

The path planning approach adopted in this paper is one instance of an
approximate cell decomposition method[2]. The search space (in this case, the
walking surface) is discretized into a fine regular grid of cells. All obstacles are
projected onto the grid and “grown” as detailed in Section 6.1. Hence, the grid
approximately captures the free regions of the search space at the given grid
resolution, and can ultimately be used for fast collision checking.

6.1 Obstacle Projection

All obstacle geometry within the character’s height range [zmin, zmax] is pro-
jected orthographically onto the grid. The height range limitation assures that
only obstacle geometry that truly impedes the motion of the character is pro-
jected. Cells in the grid are marked as either FREE or NOT-FREE, depending
upon whether or not the cell contains any obstacle geometry. The resulting 2D
bitmap B now represents an occupancy grid of all obstacles within the charac-
ter’s height range projected at their current locations onto the walking surface.

Cells in B marked as NOT-FREE are “grown” by R, the radius of a cylinder
that conservatively bounds the character’s geometry. This is done by marking all
neighboring cells within a circle of radius R from each original NOT-FREE cell
as NOT-FREE. In effect, this operation computes the Minkowski difference of
the projected obstacles and the character’s bounding cylinder, thus reducing the
problem of planning for a circular disc, into planning for a point object. To check
whether or not a disc whose center is located at (x, y) intersects any obstacles,
we can simply test whether B(x, y) , the cell in B containing the point (x, y) is
marked FREE.

For increased speed, the obstacle projection operation is performed using
rendering hardware. Here, the rendering pipeline enables us to quickly generate
the bitmap needed for fast point collision checking. An orthographic camera is
positioned above the scene pointing down along the negative normal direction
of the walking surface with the clipping planes set to the vertical extents of the
character’s geometry. The other dimensions of the orthographic view volume are
set to enclose the furthest extents of the walking surface as depicted in Figure 2.
All geometry within the view volume is projected (rendered) into either the back
buffer or an offscreen bitmap via the graphics hardware. Since we are only con-
cerned with whether or not any obstacle geometry maps to each pixel location,
we can effectively ignore the pixel color and depth value. Thus, we can turn off
all lighting effects and depth comparisons, and simply render in wireframe all
obstacle geometry in a uniform color against a default background color. Under
most reasonable graphics hardware systems, this will significantly speed up ren-
dering. Furthermore, if the graphics hardware supports variable line-widths and
point-sizes, we can perform the obstacle growth at no additional computational
cost! We simply set the line-width and point-size rendering style to correspond
to the projected pixel length of R, the radius of the character’s bounding cylin-
der. In this way, we can efficiently perform both obstacle projection and growth
simultaneously.

6.2 Path Search

The bitmap B is essentially an approximate map of the occupied and free regions
in the environment. Assume that the goal location G = (gx, gy) and the starting
location S = (sx, sy) in the bitmap are both FREE. Let us consider B as an
embedded graph of cells, each connected to its neighboring cells. By searching B
, we can conservatively determine whether or not a collision-free path exists from
the start location to the goal location at the current grid resolution. Moreover, if
we assign a cost to each arc between cells, we can search for a path that connects
S and G while minimizing our cost function. Here, we use a relative measure of
the Euclidean distance between adjacent cells as our cost. Arcs between directly
adjacent cells are assigned a cost of 1, while diagonally-adjacent cells are assigned
a relative cost of 1.4. Our task has been effectively reduced to that of searching
for a path between two nodes in a weighted graph.

Any number of standard dynamic programming techniques may be used to
search B . For simplicity, Dijkstra’s algorithm is used in the implementation

Orthographic
Projection Volume

Rendered Image

Planned Path

Fig. 2. The view volume resulting from an overhead orthographic camera is outlined.
The near and far clipping planes of the camera are defined according to the vertical
extents of the character geometry. All obstacle geometry contained within the view
volume is projected to 2D via an off-screen renderer. The resulting bitmap is searched
directly for a collision-free path connecting the character’s starting position to the goal.

described here. This search strategy will always return a path containing a list of
FREE cells between S and G if one exists at the given grid resolution. Moreover,
since a relative measure of the Euclidean distance is used as the single-step cost
between cells during the search, the returned path will be of minimal length (for
the given grid resolution).1 From the list of free cells connecting S to G , a final
path P is constructed by linking in sequence the line segments connecting the
centers of adjacent cells along the path.

6.3 Complexity Analysis

If planning is successful, the complete path is sent to the path following con-
troller. Otherwise, the controller is notified that no path exists. The planner is
resolution-complete, meaning that it is guaranteed to find a collision-free path
from S to G if one exists at the current grid resolution, and otherwise report
failure[2].

The running time of the obstacle projection step is proportional to the num-
ber and geometric complexity of the obstacles. Searching for a path in the bitmap
using Dijkstra’s algorithm runs in quadratic time with respect to the number of
free cells in the grid. Extracting the path (if one exists) runs in time proportional
to the length of the path. Overall, this planning strategy can be implemented
very efficiently and robustly even for complex environments. It is interesting to
note that paradoxically, the search phase of the planner may run faster for com-

1 In this implementation, fixed-point math is used for the distance and cost computa-
tions, resulting in a planner that runs almost entirely using fast integer arithmetic.

plex, obstacle-cluttered environments, since such environments result in fewer
free cells to search. Detailed performance results are given in Section 8.

7 Path Following

Simply computing a collision free path in the environment is not enough to pro-
duce realistic animation. The implementation described here uses cyclic motion
capture data applied to the joints of the character, plus a simple low-level pro-
portional derivative controller to follow the computed path. The quality of the
final motion arises primarily from the motion capture data, but there are other
alternatives that could be used for path following. So-called “footstep”-driven
animation systems could be applied to place the feet at points nearby the com-
puted path, along with real-time inverse kinematics (IK) to hold them in place.
As computer processing power increases, physically-based models of the charac-
ter dynamics along with complex controllers such as the one presented in [27]
could also potentially be used to simulate locomotion gaits along the path. For
the purposes of these experiments, applying cyclic motion capture data proved
to be a fast and simple method of obtaining satisfactory motion.

Although the path planning and following concept generally applies to many
types of characters and motions, we will concentrate on generating walking or
running motions for a human-like biped. We would like the character’s motion
to be smooth and continuous, natural-looking, and follow the computed path
as closely as possible. Though many kinds of path following techniques could
potentially be used, the one described here was chosen for its simplicity and
efficiency.

7.1 Mathematical Model

Human figure walking or running is essentially a quasi-nonholonomic system,
since the typical turning radius is usually subject to some minimum radius de-
pending upon the velocity. Of course, a person can turn in place, but typically,
this will only happen at the beginning or end of a path following procedure, not
in the middle of a path. Humans tend to only walk forward, not backward or
sideways (no direction reversals during path following).

With this in mind, the path following phase is modeled as one involving an
oriented disc smoothly tracking a geometric path in the plane. The disc center
corresponds to the projected point at the base of the character’s geometry, and
the orientation of the disc corresponds to the character’s forward-facing direction
as illustrated in Figure 3. The linear velocity of the disc is constrained to always
lie along the forward-facing direction. This corresponds to the character’s ability
to walk or run forward. Turning is modeled by considering the disc’s rotational
velocity about its center.

Forward−facing
direction

ω t

t
p

vt

θt

��������
��������
��������
��������
��������

Fig. 3. The controller model considers the character’s motion as that of an oriented
disc in the plane. The center of the disc corresponds to the projection of the origin of
the root joint of the figure onto the walking surface.

A discrete time simulation of the following state variables is used:

pt position (xt,yt) if the disc center
θt orientation (forward-facing direction)
vt linear speed along the direction of θt

ωt angular speed about pt

The tuple (pt, θt, vt, ωt) represents the simulated state of the character at time t.
At each time step, any combination of the following two controls may be applied:

at linear acceleration along the direction of θt

αt angular acceleration about pt

These controls model the four basic controls for our character: (speed up, slow
down, turn left, turn right). Speeding up and slowing down are represented
by positive and negative values of at respectively. Similarly, positive values of
αt correspond to left turns, while negative values correspond to right turns.
Section 7.3 explains how these controls are calculated at each time step.

Once the controls at and αt have been specified, the state variables are in-
tegrated forward discretely by the time step ∆t. In these experiments, simple
fixed-step Euler integration was used, but more sophisticated integration meth-
ods may be used if desired. For Euler integration, the state propagation equations
are as follows:

xt+∆t = xt + (vt cos θt)∆t
yt+∆t = yt + (vt sin θt)∆t
θt+∆t = θt + ωt∆t
vt+∆t = vt + at∆t
ωt+∆t = ωt + αt∆t

The simulation proceeds in this fashion iteratively. As long as the values of the
controls are reasonable relative to the size of the time step ∆t , the motion will
be smooth and continuous.

7.2 Preparing the Motion Capture Data

As a one-time pre-processing step, the motion capture data to be applied to the
path is prepared for the path following phase. Here we assume that the original
motion capture data is cyclic, and roughly follows a straight line. To begin,
the transformation of the root joint (for example, the Hip joint) for each data
frame is factored into two parts: the transformation of a base point (the point
of projection of the origin of the root joint to the walking surface) moving in a
straight line at a constant speed throughout the duration of the cycle, and the
relative transformation of the root joint with respect to the moving base point.

The reason for performing this decomposition is to allow us to apply the mo-
tion capture data to an arbitrary curve much more easily. Traditionally, motion
capture data comes in a format that specifies the transformation of the root
joint relative to some fixed global frame. Instead of trying to control the root
joint directly to follow a computed path, we can control the base point, which
by construction travels in a straight line and at a constant speed throughout the
duration of the motion cycle.

The trajectory of the base point is computed by first projecting the origin of
the root joint onto the walking surface for both the first frame and the last frame
of the motion cycle. The base point should move in the direction corresponding
to the translational difference between these two projected points. The total
distance traveled by the base point should be the length of this translational
difference. The velocity of the base point is simply this distance divided by the
time elapsed during playback of the motion cycle. The base point is the point to
which we will map the center of our oriented disc model for path following. The
direction of motion of the base point corresponds to the forward-facing direction
of the disc model.

The velocity of the base point is the canonical average velocity V of the root
joint over the duration of the motion. If the base point is made to move along
a straight line at this velocity, the motion capture data will appear as it does
in its raw form. Since we will be controlling the base point for path following,
it will move along curved paths, and at differing velocities. In order to improve
the appearance of the motion for velocities other than the average velocity, we
can incorporate other motion capture data sets taken at different walking or
running speeds. An alternative to this, is to pre-compute a table of interpolation
factors for the joint rotations, indexed by velocity. Smaller base point velocities
will result in smaller joint rotations. For example, for a basic walk cycle, the
interpolation factors can be pre-selected for each base point velocity such that
sliding of the character’s feet along the walking surface is minimized. This simple
interpolation method is used in the implementation described here, and results in
fairly reasonable motions for transitioning between a standing position to a full-
speed walk, and in coming to a stop at the end of a path. A more sophisticated
method might utilize IK to enforce “no-sliding” constraints on the feet of the
character.

7.3 Calculating the Controls

In this section, we describe a simple method for computing the two control
variables, at and αt for our character during each time step of the simulation.
The method is based on proportional derivative (PD) control. Given the current
state of the system (pt, θt, vt, ωt), a desired state (p̂t, θ̂t, v̂t, ω̂t) is calculated. The
controls at and αt are then computed to move the system towards the desired
state.

The computation proceeds as follows: Given a path P computed by the plan-
ning phase, a desired position along the path p̂t is calculated relative to the
current position pt. The desired position is typically set to be slightly ahead
of the current position along the path, as this tends to smooth out any sharp
corners on the path. Next, the desired orientation θ̂t is computed so as to face
the character towards the desired position p̂t. The desired angular speed ω̂t is
set proportional to the difference (error) between the current orientation θt and
the desired orientation θ̂t. The desired linear speed v̂t has three alternatives.
If the error in orientation is small, v̂t is simply set to be the canonical aver-
age velocity V of the motion capture cycle. Otherwise, if the error in orientation
is large, the character is facing the wrong direction, so the speed is set to be
some small non-zero value to force the character to slow down and turn around.
Lastly, if the character is nearing the end of the path (the goal location), v̂t is
calculated proportional to the difference between the current position and the
goal location. After v̂t is obtained, the controls at and αt are calculated. The
linear acceleration at is set proportional to the difference between the current
and desired linear speed, while the angular acceleration αt is set proportional to
the difference between the current and desired angular speed. The state of the
system is integrated forward by a discrete time step ∆t , and the entire process
is repeated for the next time step.

All of the calculations involving proportional derivative terms above require
the following gains2 to be specified:

kp position gain kθ orientation gain
kv linear speed gain kω angular speed gain

As long as the gains are set to reasonable values relative to the size of the time
step ∆t , the resulting motion will be smooth and continuous.

To summarize, all of the control calculations are listed below. First, we cal-
culate the desired state (p̂t, θ̂t, v̂t, ω̂t), and then compute the controls needed

2 The gains represent how quickly errors (differences between the current and the de-
sired) are resolved. Since a discrete time step is being used, some care must be taken
when setting the gains. Gains set too high will cause oscillations (an underdamped
system), while gains set too low will fail to correct errors (an overdamped system).
Setting the gains properly will result in a critically-damped system, that asymptot-
ically corrects errors without overshoot. The reader is referred to any textbook on
feedback control for more detailed information.

to move towards the desired state.

p̂t = (x̂t, ŷt) from path P
θ̂t = atan2(ŷt − yt, x̂t − xt)
ω̂t = kθ(θ̂t − θt)

v̂t =

canonical speed V if |θ̂t − θt| ≤ θturn

small speed ε if |θ̂t − θt| > θturn

kp(|p̂t − pt|) if near the goal
at = kv(v̂t − vt)
αt = kω(ω̂t − ωt)

In the computation of θ̂t, atan2(y, x) is the standard two-argument arctangent
function.

After all controls are calculated, the state is integrated forward discretely by
the time step ∆t , as described in Section 7.1. The subsequent state becomes
the new location and orientation for the base point of the character. To animate
the remaining joints, the current velocity vt is used to index into the motion
interpolation table as described in Section 7.2.

8 Experimental Results

The algorithm described here has been implemented on a 200MHz SGI Indigo2
running Irix 6.2 with 128MB of RAM and an SGI EXTREME graphics accel-
erator card. Good performance has been achieved, even on complex scenes with
multiple characters and environments composed of more than 15,000 triangle
primitives. During an interactive session, the user can click and drag on the goal
location or obstacles, and the path planner will calculate an updated, minimal-
length, collision-free path (if one exists) in approximately one-tenth of one second
on average. The path is then sent directly to the controller, and the character
will immediately begin following the new path. The precise timing results are
summarized in Section 8.1.

The generation of the projection bitmap for path planning was accomplished
by rendering all obstacles to the back buffer using standard OpenGL calls. The
rendering style optimizations for fast obstacle growth were implemented as de-
scribed in Section 6.1. The resulting pixel values were subsequently read directly
from the framebuffer. The Dijkstra’s algorithm implementation uses fixed-point
math, resulting in a planner that runs almost exclusively using fast integer arith-
metic.

For the purposes of path following, the simple PD controller described in
Section 7 was implemented for a human-like character with 17 joints. Two sets
of motion capture data were used in the experiments: a walk cycle and a jog
cycle. As expected, the slower canonical speed of the walk cycle facilitated much
better tracking performance along the path compared with the jogging motion.
The values of the gains used for the controller were as follows: (kp= 1.0, kθ=
5.0, kv= 5.0, kω= 10.0). These gain values are compatible with standard units of

meters, radians, and seconds, which were used throughout the experiments. The
value of the time step was ∆t = 0.0333 seconds (1/30 sec). Although these gain
values were obtained via trial and error, research is underway to automatically
compute the optimal gains for path following.[1] Sample output is illustrated in
Figure 4. Multiple characters were run simultaneously, each planning around the
other characters as they followed their own computed paths.

Fig. 4. Screen shots of interactive animation sessions. The left image shows multiple
characters navigating in an office environment. The image on the right shows a single
character in more detail.

8.1 Timing Results

The average projection, search, and total elapsed execution times during re-
peated invocations of the planner during an interactive session were tabulated.
The timing results are summarized in Table 8.1. All values listed in the table
are in units of milliseconds, and were averaged from N = 100 independent tri-
als with varying goal locations and obstacle positions. Different grid resolutions
were tested ranging between 45 and 150 cells on a side. The total number of
triangle primitives in the Maze scene and the Office scene were 2,780 and 15,320
respectively.

9 Discussion and Future Work

Graphic Animation by computer lies at the boundary of modeling and simulating
the real world, and shares much in common with the design and control of
robotic systems. In this paper, a fast path planner along with a simple path
following controller is used to quickly synthesize collision-free motions for level-
terrain navigation goals for human-like animated characters. Navigation goals are

Table 1. Average Total Execution Time for Path Planning.

Scene (grid size) Project Search Total (msec)

Maze (50 x 50) 9.5 7.2 16.7
Maze (100 x 100) 34.5 37.4 72.0
Maze (150 x 150) 82.9 79.8 163.0

Office (45 x 45) 47.7 13.9 61.7
Office (90 x 90) 62.7 27.4 90.2
Office (135 x 135) 139.2 56.8 196.0

specified at the task level, and the resulting animation is derived from underlying
motion capture data driven by a simple proportional derivative controller. The
speed of the planning algorithm enables it to be used effectively in environments
where obstacles and other characters move unpredictably.

Although useful in its present form, the algorithm could be improved in a
number of important ways. The most severe limitation of the planner is the
level-terrain requirement. Extending the algorithm to handle uneven-terrain is
possible, but it would involve redesigning the geometry clipping and projection
operations. Perhaps the approach taken by Hsu and Cohen would be more appro-
priate in this situation [14]. Possible extensions to the basic algorithm, include
incorporating into the planning process the ability to step over low obstacles, or
duck under overhangs. One idea might be to utilize the depth information infor-
mation that is generated, but is currently being ignored during the projection
process. The hardware Z-buffer stores a relative measure of the depth, yielding
a simple height field of the environment, which might be useful for deciding a
navigation strategy. The same basic idea could perhaps be applied to even more
aggressive means of circumventing obstacles, such as utilizing stairs/elevators,
climbing, jumping, or crawling. Another limitation of the current approach is
the approximate nature of the grid, which may fail to find a free path when one
exists, especially when it involves navigating through narrow passages. Perhaps
a multi-resolution strategy would be appropriate.

The path following controller as described here is overly-simplistic, and ig-
nores such subtleties of human motion as turning in-place, or side-stepping be-
tween narrow openings. Incorporating more motion capture data sets at different
velocities, or along curved paths would also likely improve the final appearance
of the animation. In addition, the ability to automatically compute the opti-
mal values for the controller gains based on the simulation constants and the
canonical speed of the motion capture data would be a very useful improvement.
Knowing these optimal gains might also facilitate the calculation of conservative
error-bounds on the performance of the path following controller.

Efforts to incorporate active perception based on simulated vision into the
planning process are currently underway[1]. In addition, some simple velocity
prediction to take into account the estimated motion of other characters and
obstacles during planning is also being investigated. Clearly, many challenging

research issues must be faced before more interesting motions and intelligent
behaviors for autonomous animated characters can be realized.

Acknowledgments

Much gratitude is extended to David Hsu for his thoughtful insights and helpful
suggestions, and to Diego Ruspini for reviewing the initial manuscript in detail.
Thanks also to Yotto Koga, Craig Becker, Michael Svihura, David Lin, Jing
Xiao, and Jean-Claude Latombe, who through informal conversations helped
to formulate the ideas presented here. This research is supported in part by a
National Science Foundation Graduate Fellowship in Engineering, and MURI
grant DAAH04-96-1-007 (Army).

References

[1] J. J. Kuffner Jr., An Architecture for the Design of Intelligent Animated Charac-
ters, Ph.D. thesis, Stanford University (in preparation).

[2] J. C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston,
MA, 1991.

[3] A. Witkin and Z. Popovic, “Motion warping,” in Proc. SIGGRAPH ’95, 1995.
[4] A. Bruderlin and L. Williams, “Motion signal processing,” in Proc. SIGGRAPH

’95, Robert Cook, Ed. ACM SIGGRAPH, Aug. 1995, Annual Conference Series,
pp. 97–104, Addison Wesley, held in Los Angeles, California, 06-11 August 1995.

[5] D. Baraff, “Analytical methods for dynamic simulation of non-penetrating rigid
bodies,” in Proc. SIGGRAPH ’89, 1989, pp. 223–231.

[6] B. Mirtich, Impulse-Based Dynamic Simulation of Rigid Body Systems, Ph.D.
thesis, University of California, Berkeley, CA, 1996.

[7] A. Witkin and Kass M., “Spacetime constraints,” in Proc. SIGGRAPH ’88, 1988,
pp. 159–168.

[8] J. T. Ngo and J. Marks, “Spacetime constraints revisited,” in Proc. SIGGRAPH
’93, 1993, pp. 343–350.

[9] Z. Liu, S. J. Gortler, and F. C. Cohen, “Hierachical spacetime control,” in Proc.
SIGGRAPH ’94, 1994, pp. 35–42.

[10] R. A. Brooks, “A layered intelligent control system for a mobile robot,” in
Robotics Research The Third International Symposium. 1985, pp. 365–372, MIT
Press, Cambridge, MA.

[11] R. C. Arkin, “Cooperation without communication: Multiagent schema based
robot navigation,” Journal of Robotic Systems, pp. 351–364, 1992.

[12] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-time robot
motion planning using rasterizing computer graphics hardware,” in Proc. SIG-
GRAPH ’90, 1990.

[13] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe, “Planning motions with
intentions,” in Proc. SIGGRAPH ’94, 1994, pp. 395–408.

[14] D. Hsu and M. Cohen, “Task-level motion control for human figure animation,”
Unpublished Manuscript, 1997.

[15] M. R. Jung, N. Badler, and T. Noma, “Animated human agents with motion
planning capability for 3D-space postural goals,” The Journal of Visualization
and Computer Animation, vol. 5, no. 4, pp. 225–246, October 1994.

[16] J. P. Granieri, W. Becket, B. D. Reich, J. Crabtree, and N. L. Badler, “Behavioral
control for real-time simulated human agents,” in 1995 Symposium on Interactive
3D Graphics, Pat Hanrahan and Jim Winget, Eds. ACM SIGGRAPH, Apr. 1995,
pp. 173–180, ISBN 0-89791-736-7.

[17] E. Kokkevis, D. Metaxas, and N. I. Badler, “Autonomous animation and control of
four-legged animals,” in Graphics Interface ’95, Wayne A. Davis and Przemyslaw
Prusinkiewicz, Eds. Canadian Information Processing Society, May 1995, pp. 10–
17, Canadian Human-Computer Communications Society, ISBN 0-9695338-4-5.

[18] N. Badler, “Real-time virtual humans,” Pacific Graphics, 1997.
[19] X. Tu and D. Terzopoulos, “Artificial fishes: Physics, locomotion, perception,

behavior,” in Proc. SIGGRAPH ’94, Andrew Glassner, Ed. ACM SIGGRAPH,
July 1994, Computer Graphics Proceedings, Annual Conference Series, pp. 43–50,
ACM Press, ISBN 0-89791-667-0.

[20] H. Noser, O. Renault, D. Thalmann, and N. Magnenat Thalmann, “Navigation
for digital actors based on synthetic vision, memory and learning,” Comput.
Graphics, vol. 19, pp. 7–19, 1995.

[21] K. Perlin and A. Goldberg, “IMPROV: A system for scripting interactive ac-
tors in virtual worlds,” in Proc. SIGGRAPH ’96, Holly Rushmeier, Ed. ACM
SIGGRAPH, 1996, Annual Conference Series, pp. 205–216, Addison Wesley.

[22] K. Perlin, “Real time responsive animation with personality,” IEEE Transactions
on Visualization and Computer Graphics, vol. 1, no. 1, pp. 5–15, March 1995, ISSN
1077-2626.

[23] B. M. Blumberg and T. A. Galyean, “Multi-level direction of autonomous crea-
tures for real-time virtual environments,” in Proc. SIGGRAPH ’95, Robert Cook,
Ed. ACM SIGGRAPH, Aug. 1995, Annual Conference Series, pp. 47–54, Addison
Wesley, held in Los Angeles, California, 06-11 August 1995.

[24] P. Maes, D. Trevor, B. Blumberg, and A. Pentland, “The ALIVE system full-body
interaction with autonomous agents,” in Computer Animation ’95, Apr. 1995.

[25] J. Bates, A. B. Loyall, and W. S. Reilly, “An architecture for action, emotion,
and social behavior,” in Artificial Social Systems : Proc of 4th European Wkshp
on Modeling Autonomous Agents in a Multi-Agent World. 1994, Springer-Verlag.

[26] D. C. Brogan and J. K. Hodgins, “Group behaviors with significant dynamics,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems,
1995.

[27] J. K. Hodgins, “Three-dimensional human running,” in Proc. IEEE Int. Conf.
on Robotics and Automation, 1996.

[28] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in Proc. 20th
IEEE Symp. on Foundations of Computer Science (FOCS), 1979, pp. 421–427.

