
Interactive Manipulation Planning for Animated Characters

James Kuffner, Jr. Jean-Claude Latombe
Department of Computer Science

Stanford University, Stanford, CA 94305 USA
{kuffner,latombe}@cs.stanford.edu

http://robotics.stanford.edu/˜kuffner/anim/

Abstract

We present a brief overview of an algorithm for interac-
tively animating object grasping and manipulation tasks for
human figures. The technique is designed to efficiently gen-
erate feasible single-arm manipulation motions given high-
level task commands. For moving an object, the motions
necessary for a human arm to reach and grasp the object,
reposition it, and return the arm to rest are generated auto-
matically within a few seconds on average.

The method synthesizes motion “on-the-fly” by directly
searching the configuration space of the arm. Goal config-
urations for the arm are computed using an inverse kine-
matics algorithm that attempts to select a natural posture.
A collision-free trajectory connecting the arm initial con-
figuration to the goal configuration is computed using a
randomized path planner. A high-level description of the
methods is given along with results from some computed
examples using a human character model.

1. Introduction

Object manipulation is an important class of motions for
interactive animated characters. Manipulation tasks can en-
compass a virtually unlimited combination of object and ob-
stacle geometries. Thus, it seems unlikely that one would be
able to successfully enumerate all possibilities and simply
store thousands of pre-recorded motion sequences. Instead,
a flexible strategy that can accommodate a wide range of
situations is needed.

This paper briefly describes a motion synthesis strategy
that combines inverse kinematics and path planning to in-
teractively animate reaching and object manipulation tasks.
The human arm is modeled as a kinematic chain with seven
degrees of freedom, and motion trajectories are computed
directly within the configuration space. Because of high-
dimensionality, the space cannot be explicitly represented.
Instead, the space is sampled using a randomized planner
that has been specifically tailored to quickly solving com-
mon planning queries involving human arms.

2) Grab 4) Release

3) Transfer1) Reach 5) Return

Figure 1. Repositioning a bottle.

For testing and evaluation purposes, we have designed an
interactive application involving human characters that can
autonomously manipulate objects. The software is able to
generate collision-free motions for typical single-arm ma-
nipulation tasks at interactive rates. Though many improve-
ments can be made, the generated animation looks fairly
realistic.

2. Synthesizing Manipulation Motions

Unlike motion capture editing methods which require an
existing motion sequence as input[3, 9], our manipulation
planning algorithm synthesizes motion from scratch. We
previously presented a path planner suitable for computing
dual-arm manipulation motions offline[6]. The single-arm
planner described here is fast enough for interactive applica-
tions, where manipulation motions for human figures must
be computed “on-the-fly” from high-level task commands.

Given a task command to reposition an object in the envi-
ronment, the planner will attempt to compute three trajecto-
ries (Figure 1): 1)Reach: Move the arm to grasp the object.
2)Transfer: After grasping, transfer the object to the target
location. 3)Return: Once the object has been placed at the



target location, release it and return the arm to its rest posi-
tion. An inverse kinematics algorithm for the arm is used to
compute the goal configurations for the Reach and Transfer
tasks. The path planner searches for a collision-free trajec-
tory connecting the initial and the goal configurations.

Inverse Kinematics: We use an inverse kinematics algo-
rithm based on neurophysiological data to resolve the re-
dundancy in a 7DOF model of the human arm[6]. The cur-
rent implementation uses only the arm joints, but the torso
and hip joints could also be used if an appropriate inverse
kinematics algorithm is available.

Path Planning: For path planning, we used a monte carlo
search algorithm based on rapidly-exploring random trees
(RRTs) in the configuration space[7]. This algorithm was
selected for its speed in solving single-query path planning
problems, particularly in character animation[8]. How-
ever, other successful single-query path planning techniques
could potentially be used[2, 5].

3. Experiments

Figure 2 shows some example manipulation tasks solved
by the planner. All motions were computed in 1 to 3 sec-
onds on average on a 270 MHz SGI O2 running Irix 6.5 (see
table below). The human arm is modeled as a 7-DOF kine-
matic chain, and each scene contains over 10,000 triangle
primitives. The 3D collision checking software used was
the RAPID library based on OBB-Trees developed by the
University of North Carolina[4].

Task Description Computation Time (seconds)
min max avg stdev

Reposition coffeepot 0.44 3.12 1.43 0.77
Move chess piece 0.17 1.84 0.78 0.48
Reach and move hammer 0.92 6.88 2.79 1.74

4. Summary

For planning single-arm manipulation tasks for human
characters, we have proposed a motion generation strat-
egy that relies primarily on inverse kinematics and path
planning software. Our algorithm synthesizes from scratch
realistic-looking, relatively complex manipulation motions
for human figures at interactive rates. The planner has the
desirable characteristics of requiring no pre-processing, no
“magic numbers” to tweak, and has been shown to con-
verge towards a uniform exploration of the configuration
space[7]. Future work includes extending the planner to
handle dual-arm manipulation tasks, and incorporating ad-
ditional degrees of freedom.

Acknowledgments: This research was supported in part by a Na-
tional Science Foundation Graduate Fellowship in Engineering, and MURI
grant DAAH04-96-1-007 (Army). We also thank Steve LaValle and David
Hsu for many useful discussions regarding path planning.

Moving a coffee pot around a lamp obstacle.

Playing a game of virtual chess.

Withdrawing a hammer from within a box.

Figure 2. Some computed examples.

References

[1] S. Bandi. Discrete Object Space Methods for Computer An-
imation. PhD thesis, Swiss Federal Institute of Technology,
Lausanne, Switzerland, 1998.

[2] R. Bohlin and L. Kavraki. Path planning using lazy PRM.
In In Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA’2000), Apr. 2000.

[3] M. Gleicher. Retargetting motion to new characters. In Proc.
SIGGRAPH ’98, 1998.

[4] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTREE: A
hierarchical structure for rapid interference detection. In Proc.
SIGGRAPH ’96, 1996.

[5] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in
expansive configuration spaces. Int. J. of Computational Ge-
ometry and Applications, 9(4-5):495–512, 1997.

[6] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning
motions with intentions. In Proc. SIGGRAPH ’94, 1994.

[7] J. Kuffner and S. LaValle. RRT-Connect: An efficient ap-
proach to single-query path planning. In In Proc. IEEE Int’l
Conf. on Robotics and Automation (ICRA’2000), Apr. 2000.

[8] J. Kuffner Jr. Autonomous Agents for Real-time Animation.
PhD thesis, Stanford University, 1999.

[9] A. Witkin and Z. Popovic. Motion warping. In Proc. SIG-
GRAPH ’95, 1995.


