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Abstract

This paper presents the first randomized approach to kinodynamic planning (also known as trajectory plan-
ning, or trajectory design). The task is to determine control inputs to drive a robot from an initial con-
figuration and velocity to a goal configuration and velocity while obeying physically-based dynamical models
and avoiding obstacles in the robot’s environment. We consider generic systems that express the nonlinear
dynamics of a robot in terms of the robot’s high-dimensional configuration space. Kinodynamic planning is
treated as motion planning problem in a higher-dimensional state space that has both first-order, differential
constraints and obstacle-based, global constraints. The state space serves the same role as the configura-
tion space for basic path planning; however, standard randomized path planning techniques do not directly
apply to planning trajectories in the state space. We have developed a randomized planning approach that
is particularly tailored to trajectory planning problems in high-dimensional state spaces. The basis for this
approach is the construction of Rapidly-exploring Random Trees (RRTs), which offer benefits that are sim-
ilar to those obtained by successful randomized holonomic planning methods, but apply to a much broader
class of problems. Theoretical analysis of the algorithm is given. Experimental results are presented for an
implementation that computes trajectories for hovercrafts and satellites in cluttered environments, resulting

in state spaces of up to twelve dimensions.



1 Introduction

There is a strong need for a general-purpose, efficient planning technique that determines control inputs to
drive a robot from an initial configuration and velocity to a goal configuration and velocity while obeying
physically-based dynamical models and avoiding obstacles in the robot’s environment. In other words, a
fundamental task is to design a feasible open-loop trajectory that satisfies both global obstacle constraints
and local differential constraints. We use the word kinodynamic planning, introduced in [20], to refer to
such problems!. These solutions would be valuable in a wide variety of applications. In robotics, a nominal
trajectory can be designed for systems such as mobile robots, manipulators, space robots, underwater robots,
helicopters, and humanoids. This trajectory can be used to evaluate a robot design in simulation, or as a
reference trajectory for designing a feedback control law. In virtual prototyping, engineers can use these
trajectories to evaluate the design of many mechanical systems, possibly avoiding the time and expense of
building a physical prototype. For example, in the automotive industry, the planning technique can serve as
a “virtual stunt driver” that determines whether a proposed vehicle can make fast lane changes or can enter
a dangerous state such as toppling sideways. In the movie and game industries, advanced animations can be
constructed that automate the motions of virtual characters and devices, while providing realism that obeys
physical laws. In general, such trajectories may be useful in any application area which can be described
using control theoretic models, from analog circuits to economic systems.

The classic approach in robotics research has been to decouple the general robotics problem by solving
basic path planning, and then find a trajectory and controller that satisfies the dynamics and tracks the path
[10, 39, 64]. The vast majority of basic path planning algorithms consider only kinematics, while ignoring the
system dynamics entirely. In this paper, we consider kinodynamic planning as a generalization of holonomic
and nonholonomic planning in configuration spaces, by replacing popular configuration-space notions [47] by
their state space (or phase space) counterparts. A point in the state space may include both configuration
parameters and velocity parameters (i.e., it is the tangent bundle of the configuration space).

It may be the case that the result of a purely kinematic planner will be unexecutable by the robot in the
environment due to limits on the actuator forces and torques. Imprecision in control, which is always present
in real-world robotic systems, may require explicitly modeling system dynamics to guarantee collision-free
trajectories. Robots with significant dynamics are those in which natural physical laws, along with limits on
the available controls, impose severe constraints on the allowable velocities at each configuration. Examples

of such systems include helicopters, airplanes, certain-classes of wheeled vehicles, submarines, unanchored

n nonlinear control literature, kinodynamic planning for underactuated systems is encompassed by the definition of non-
holonomic planning. Using control-theoretic terminology, we characterize our work as open-loop trajectory design for nonlinear
systems with drift and nonconvex state constraints. Other terms include trajectory planning or trajectory design.



Figure 1: We consider planning problems with dynamic constraints induced by physical laws. The above
image shows the state exploration trees computed for a rigid rectangular object (left). The goal location is
represented by a sphere (upper right).

space robots, and legged robots with fewer than four legs. In general, it is preferable to look for solutions to
these kinds of systems that naturally flow from the physical models, as opposed to viewing dynamics as an
obstacle.

These concerns provide the general basis for kinodynamic planning research. One of the earliest algo-
rithms is presented in [61], in which minimum-time trajectories were designed by tesellating the joint space
of a manipulator, and performing dynamic programming-based search that uses time-scaling ideas to reduce
the search dimension. Algebraic approaches solve for the trajectory exactly, though the only known solutions
are for point masses with velocity and acceleration bounds in one dimension [55] and two dimensions [14].
Provably approximately-optimal kinodynamic trajectories are computed in [20] by dynamic programming-
based search on the state space by systematically applying control inputs. Other papers have extended or
modified this technique [19, 18, 28, 59]. A dynamic programming-based approach to kinodynamic planning
for all-terrain vehicles was presented in [16]. In [24], an incremental, variational approach is presented to
perform state-space search. An approach to kinodynamic planning based on Hamiltonian mechanics is pre-
sented in [17]. An efficient approach to kinodynamic planning was developed by adopting as sensor-based
philosophy that maintains an emergency stopping path which accounts for robot inertia [65].

Although several kinodynamic planning approaches exist, they are either limited to low degree-of-freedom

problems or particular systems that enable simplification. Randomized techniques have led to efficient,



incomplete planners for basic, holonomic path planning; however, there appears to be no equivalent technique
for the broader kinodynamic planning problem (or even nonholonomic planning in the configuration space).
We present a randomized approach to kinodynamic planning that quickly explores the state space, and scales
well for problems with high degrees-of-freedom and complicated system dynamics. Our ideas build on a large
foundation of related research, which is briefly presented in Section 2.

Section 3 defines the problem and indicates some of its difficulties. Our proposed planning approach is
based on the concept of Rapidly-exploring Random Trees (RRTs) [44], and is presented in Section 4. To
demonstrate the utility of our approach, a series of planning experiments for hovercrafts in %2 and spacecrafts
in N3 is presented in Section 5. Furthermore, some theoretical analysis of the planner’s performance is given

in Section 6. Finally, some conclusions and directions for future research are given in Section 7.

2 Other Related Research

Dynamic programming For problems that involve low degrees of freedom, classical dynamic program-
ming ideas can be employed to yield numerical optimal control solutions for a broad class of problems
[8, 9, 38, 43]. Since control theorists have traditionally preferred feedback solutions, the representation often
takes the form of a mesh over which cost-to-go values are defined using interpolation, enabling inputs to
be selected over any portion of the state space. If open-loop solutions are the only requirement, then each
cell in the mesh could be replaced by a vertex that represents a single state within the cell. In this case,
control-theoretic numerical dynamic programming technique can often be reduced to the construction of a
tree grown from an initial state [37]. This idea has been proposed in path planning literature for nonholo-
nomic planning [6, 48] and kinodynamic planning [16, 20]. Because these methods are based on dynamic
programming and systematic exploration of a grid or mesh, their application is limited to problems with low

degrees of freedom.

Steering methods The steering problem has received considerable attention in recent years. The task
is to compute an open-loop trajectory that brings a nonholonomic system from an initial state to a goal
state, without the presence of obstacles. Given the general difficulty of this problem, most methods apply
to purely kinematic models (i.e., systems without drift or momentum). For a kinematic car that has limited
turning radius and moves forward only, it was shown that shortest path between any two configurations
belongs to one of a family of six kinds of curves comprised of straight lines and circular arcs [21]. For a
car that can move forward or backwards, optimal solutions comprised of 48 curve types have been obtained

[11, 58, 69]. For more complicated kinematic models, non-optimal steering techniques have been introduced,



which includes for example a car pulling trailers [54], firetrucks [13]. Techniques also exist for general system
classes, such as nilpotent [35], differentially flat [53, 25], and chained form [13, 54, 67]. For systems with

drift and/or obstacles, the steering problem remains a formidable challenge.

Nonholonomic planning The nonholonomic planning problem was introduced in [40], and has blossomed
into a rich area of research in recent years. Rather than surveying this large body of research, we refer the
reader to recent, detailed surveys [22, 41]. Most current approaches to nonholonomic planning rely on the
existence of steering methods that can be used in combination with holonomic motion planning techniques.
Other approaches exploit particular properties or very special systems (esp. kinematic car models). For

most nonholonomic systems, it remains a great challenge to design efficient path planning methods.

Lower bounds Kinodynamic planning in general is at least as hard as the generalized mover’s problem,
which has been proven to be PSPACE-hard [60]. Hard bounds have also been established for time-optimal
trajectories. Finding an exact time-optimal trajectory for a point mass with bounded acceleration and
velocity moving amidst polyhedral obstacles in 3D has been proven to be NP-hard [20]. The need for
simple, efficient algorithms for kinodynamic planning, along with the discouraging lower-bound complexity
results, have motivated us to explore the development of randomized techniques for kinodynamic planning.
This parallels the reasoning that led to the success of randomized planning techniques for holonomic path

planning.

Randomized holonomic planning It would certainly be useful if ideas can be borrowed or adapted from
existing randomized path planning techniques that have been successful for basic, holonomic path planning.
For the purpose of discussion, we choose two different techniques that have been successful in recent years:
randomized potential fields (e.g, [7, 15]) and probabilistic roadmaps (e.g., [1, 32]). In the randomized
potential field approach, a heuristic function is defined on the configuration space that attempts to steer
the robot toward the goal through gradient descent. If the search becomes trapped in a local minimum,
random walks are used to help escape. In the probabilistic roadmap approach, a graph is constructed in
the configuration space by generating random configurations and attempting to connect pairs of nearby
configurations with a local planner. Once the graph has been constructed, the planning problem becomes
one of searching a graph for a path between two nodes. If an efficient steering method exists for a particular
system, then it is sometimes possible to extend randomized holonomic planning techniques to the case of

nonholonomic planning [70, 62, 63].



Drawing inspiration from previous work Inspired by the success of randomized path planning tech-
niques and Monte-Carlo techniques in general for addressing high-dimensional problems, it is natural to
consider adapting existing planning techniques to our problems of interest. The primary difficulty with
existing techniques is that, although powerful for standard path planning, they do not naturally extend
to general problems that involve differential constraints. The randomized potential field method [5], while
efficient for holonomic planning, depends heavily on the choice of a good heuristic potential function, which
could become a daunting task when confronted with obstacles, and differential constraints. In the proba-
bilistic roadmap approach [1, 32], a graph is constructed in the configuration space by generating random
configurations and attempting to connect pairs of nearby configurations with a local planner that will con-
nect pairs of configurations. For planning of holonomic systems or steerable nonholonomic systems (see
[41] and references therein), the local planning step might be efficient; however, in general the connection
problem can be as difficult as designing a nonlinear controller, particularly for complicated nonholonomic
and dynamical systems. The probabilistic roadmap technique might require the connections of thousands
of configurations or states to find a solution, and if each connection is akin to a nonlinear control problem,
it seems impractical many problems with differential constraints. Furthermore, the probabilistic roadmap
is designed for multiple queries. The underlying theme in that work is that it is worthwhile to perform
substantial precomputation on a given environment, to enable numerous path planning queries to be solved
efficiently.

In our approach, we are primarily interested in answering a single query efficiently, without any prepro-
cessing of the environment. In this case, the exploration and search are combined in a single method, without
substantial precomputation that is associated with a method such as the probabilistic roadmap. This idea
is similar to classical AI search techniques, the Ariadne’s clew algorithm for holonomic planning [50], and
the related holonomic planners in [30, 72].

To directly handle differential constraints, we would like to borrow some of the ideas from numerical
optimal control techniques, while weakening the requirements enough to obtain methods that can apply to
problems with high degrees of freedom. As is common in most of path planning research, we forego trying
to obtain optimal solutions, and attempt to find solutions that are “good enough,” as long as they satisfy
all of the constraints. This avoids the use of dynamic programming and systematic exploration of the space;
however, a method is needed to guide the search in place of dynamic programming. These concerns have

motivated our development of RRTs [44] and the proposed planning algorithm.

Recent advances This paper is an expanded version of [45]. Since that time, several interesting devel-

opments have occurred. In [26], the ideas contained in this paper were applied to the problem of designing



trajectories for a helicopter flying among polyhedral obstacles. Substantial performance benefits were ob-
tained by using a metric based on the optimal cost-to-go for a hybrid nonlinear system that ignores obstacles.
In [71], H*® techniques and curve fitting were applied to yield an efficient planner that builds on ideas from
[45]. A randomized kinodynamic planning algorithm was proposed recently for the case of time-varying
environments in [33]. A deterministic kinodynamic planning algorithm based on collocation was presented

recently in [23].

3 Problem Formulation: Path Planning in the State Space

We formulate the kinodynamic planning problem as path planning in a state space that has first-order
differential constraints. We would like the state space to have the same utility as a representational tool as
the configuration space for a purely-kinematic problem. Let C denote the configuration space (C-space) that
arises from a rigid or articulated body that moves in a 2D or 3D world. Each configuration ¢ € C represents
a transformation that is applied to a geometric model of the robot. Let X denote the state space, in which a
state, z € X, is defined as z = (¢, ¢). The state could include higher-order derivatives if necessary, but such

systems are not considered in this paper.

Differential constraints When planning in C, differential or nonholonomic constraints often arise from
the presence of one or more rolling contacts between rigid bodies, or from the set of controls that it is possible
to apply to a system. When planning in X', nonholonomic constraints also arise from conservation laws (e.g.
angular momentum conservation). Using Lagrangian mechanics, the dynamics can be represented by a set
of equations of the form h;(g,qd,q) = 0. Using the state space representation, this can be simply written
as a set of m implicit equations of the form g¢;(z,&) = 0, for ¢ = 1,...,m and m < 2n, in which n is the
dimension of C. It is well known that under appropriate conditions the Implicit Function Theorem allows

the constraints to be expressed as
& = f(z,u), (1)

in which v € U, and U represents a set of allowable controls or inputs. Equation 1 effectively yields a
convenient parameterization of the allowable state transitions via the controls in U.

The proposed approach will require a numerical approximation to (1). Given the current state, x(t), and
inputs applied over a time interval, {u(t') | t <t <t + At}, the task is to compute z(t + At). This can be
achieved using a variety of numerical integration techniques. For example, assuming constant input, u, over

the interval [t,t + At), a standard form of fourth-order Runge-Kutta integration yields

¥ = folt) + S, w),u),
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and
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z(t + At) = z(t) + F(f(m(t),u) + 22" + 22" + ™).

For many applications, (1) might not be available. For example, motions might be generated from a
complicated dynamical simulation package that considers collisions, flexible parts, vehicle dynamics, finite
element analysis, etc. For these cases, our techniques can be directly applied without requiring (1). The
only requirement is that an incremental simulation of the system can be generated for any current state and

input.

Obstacles in the state space Assume that the environment contains static obstacles, and that a collision
detection algorithm can determine efficiently whether a given configuration is in collision. It may even
be assumed that an entire neighborhood around a configuration is collision free by employing distance
computation algorithms [46, 51, 57]. There are interesting differences between finding collision-free paths in
C versus in the state space, X. When planning in C, it is useful to characterize the set C,ps¢ of configurations
at which the robot is in collision with an obstacle (or itself) [39]. The path planning problem involves finding
a continuous path that maps into C¢ree = C \ Copst. For planning in X, this could lead to a straightforward
definition of X,ps by declaring & € X,ps if and only if ¢ € Copst for = (g, ¢). However, another interesting
possibility exists: the region of inevitable collision. Let X,.;. denote the set of states in which the robot is
either in collision or, because of momentum, it cannot do anything to avoid collision. More precisely, a state
lies in A, if there exist no inputs that can be applied over any time interval to avoid collision. Note that
Xopst € Xrie. Thus, it might be preferable to define Xppee = X'\ Xric, as opposed to X'\ Xppst.

The region of inevitable collision, A}.;., provides some intuition about the difficulty of kinodynamic
planning over holonomic and purely-kinematic nonholonomic planning. Figure 2 illustrates conservative
approximations of A,.;. for a point mass robot that obeys Newtonian mechanics without gravity. The robot
is assumed to have L2-bounded acceleration, and an initial velocity pointing along the positive z axis. As
expected intuitively, if the speed increases, X;;. grows. Ultimately, the topology of X'\ X.;. may be quite
distinct from the topology X \ X,pst, which intuitively explains part of the challenge of the kinodynamic
planning problem. Even though there might exist a kinematic collision-free path, a kinodynamic trajectory
might not exist. For the remainder of the paper, we assume that Xypee = X'\ Appse (0ne could alternatively

define Xfpee = X \ Xpic).
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Figure 2: Slices of &’ for a point mass robot in 2D with increasingly higher initial speeds. White areas
represent Xt,..; black areas are X455 gray areas approximate &p.qc.

A solution trajectory The kinodynamic planning problem is to find a trajectory from an initial state
ZTinit € X to a goal state xg0q1 € X or goal region Xgoq C X'. A trajectory is defined as a time-parameterized
continuous path 7 : [0,T] — Xjree that satisfies the nonholonomic constraints. Recall from (1) that the
change in state is expressed in terms of an input, u. A more convenient way to formulate the problem is to
find an input function w : [0,7] — U which results in a collision-free trajectory that starts at x;,;, and ends
at Tgoar OF Xgoar- The trajectory, z(t) for ¢ € [0,T], is determined through the integration of (1). It might
also be appropriate to select a path that optimizes some criterion, such as the time to reach Tgoq. It is
assumed that optimal solutions are not required; however, here we assume that there is some loose preference

for better solutions. A similar situation exists in the vast majority of holonomic planning methods.

Why does the problem present unique challenges? The difference between A and C is usually a factor
of two in dimension. The curse of dimensionality has already contributed to the success and popularity of
randomized planning methods for C-space; therefore, it seems that there would be an even greater need to
develop randomized algorithms for kinodynamic planning. One reason that might account for the lack of

practical, efficient planners for problems in X'-space is that attention is usually focused on obtaining optimal



solutions with guaranteed deterministic convergence. The infeasibility of this requirement for generic high-
dimensional systems has led many researchers to adopt a decoupled approach in which classical motion
planning is first performed, and trajectory design is optimized around a particular motion planning solution.

Another reason why randomized kinodynamic planning approaches have not appeared is that kinody-
namic planning is considerably harder due to momentum. Consider adapting randomized holonomic planning
techniques to the problem of finding a path in Xf,.. that also satisfies (1), instead of finding a holonomic
path in Cfre.. The potential field method appears nicely suited to the problem because a discrete-time
control can repeatedly selected that reduces the potential. The primary problem is that dynamical systems
usually have drift, which could easily cause the robot to overshoot the goal, leading to oscillations. Without
a cleverly-constructed potential function (which actually becomes a difficult nonlinear control problem), the
method cannot be expected to work well. Imagine how often the system will be pulled into X,;.. The
problem of designing a good heuristic function becomes extremely complicated for the case of kinodynamic
planning.

The probabilistic roadmap technique might also appear amenable to kinodynamic planning. The primary
requirement is the ability to design a local planner that will connect pairs of configurations (or states in our
case) that are generated at random. Indeed, this method was successfully applied to a nonholonomic planning
problem in [70]. One result that greatly facilitated this extension of the technique to nonholonomic planning
was the existence of Reeds-Shepp curves [58] for car-like robots. This result directly enables the connection of
two configurations with the optimal-length path. For more complicated problems, such as kinematic planning
for a tractor-trailer, a reasonable roadmap planner can be developed using steering results [63]. These results
enable a system to be driven from one configuration to another, and generally apply to driftless systems
that are nilpotentizable (a condition on the underlying Lie algebra). In general, however, the connection
problem can again be as difficult as designing a nonlinear controller. The probabilistic roadmap technique
might require the connections of thousands of states to find a solution, and if each connection is akin to a

nonlinear control problem, it seems impractical for systems that do not allow efficient steering.

4 A Planner Based on Rapidly-Exploring Random Trees

The unique difficulties with kinodynamic planning motivated us to design a randomized planning technique
particularly suited for kinodynamic planning (it also applies to the simpler problems of nonholonomic plan-
ning in C and basic path planning in C [34]). Our intention has been to develop a method that easily “drives
forward” like potential field methods or the Ariadne’s clew algorithm, and also quickly and uniformly explores

the space like probabilistic roadmap methods.
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Figure 3: A Naive Random Tree vs. a Rapidly-exploring Random Tree. Each tree has 2000 vertices.

Figure 4: The RRT contains a Voronoi bias which causes rapid exploration.
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BUILD_RRT(zinit)

2 fork=1to K do

3 Trand ¢ RANDOM_STATE();
4 EXTEND(T, Zand);

5 Return 7

EXTEND(T, )
1 Zpear + NEAREST_NEIGHBOR(z, 7);
2 if NEW_STATE(z, Zpear, Tnew, Unew) then
3 T .add_vertex(Tpew);

4 T~add—edge(xnear: Tnew, 'U/new)Q
5 if 2,0, = = then

6 Return Reached,

7 else

8 Return Advanced,

9 Return Trapped,;

Figure 5: The basic RRT construction algorithm.

To motivate and illustrate the concepts, first consider the simple case of planning for a point robot in a
two-dimensional configuration space. To prepare for the extension to kinodynamic planning, suppose that
the motion of the robot is governed by a control law, xx+1 = f(zk, ur), which is considered as a discrete-time
approximation to (1). For this simple problem, suppose that U represents a direction in S toward which
the robot can be moved a fixed, small distance in time At¢. Consider Figure 3, in which the robot starts
at (50,50) in an environment that ranges from (0,0) to (100, 100), and the robot can move 2 units in one
application of the discrete-time control law. The first scheme can be considered as a Naive Random Tree,
which is incrementally constructed by randomly picking an existing vertex, xj from the tree, a control ux € U
at random, and adding an edge of length 2 from zj to f(xg,ur). Although it appears somewhat random,
this tree has a very strong bias towards places it has already explored. To overcome this bias, we propose to
construct a Rapidly-exploring Random Tree as follows. Insert the initial state as a vertex. Repeatedly select
a point at random in [0,100] x [0,100], and find the nearest-neighbor, z, in the tree. Choose the control
ug, € U that pulls the vertex toward the random point. Insert the new edge and vertex for xg+1 = f(zg, ug)-
This technique generates a tree that rapidly explores the state space. An argument for this can be made
by considering the Voronoi regions of the vertices; see Figure 4. Random sampling tends to extend vertices
that have larger Voronoi regions, and are therefore have too much unexplored space in their vicinity. By
incrementally reducing the size of larger Voronoi regions, the graph spreads in a uniform manner. It is shown
in [34] that for holonomic planning, the distribution of RRT vertices converges in probability to distribution

that is used for sampling, even in nonconvex spaces (regardless of the initial state).
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Figure 6: The EXTEND operation.

The algorithm that constructs an RRT is shown in Figure 5. A simple iteration is performed in which
each step attempts to extend the RRT by adding a new vertex that is biased by a randomly-selected state.
The EXTEND function, illustrated in Figure 6, selects the nearest vertex already in the RRT to the given
sample state. The “nearest” vertex is chosen according to the metric, p. The function NEW_STATE makes
a motion toward x by applying an input u € U for some time increment At¢. In general, At may be much
larger than the time increment that is used for numerical integration. At can be fixed, or selected randomly
at each iteration from a range of values (0,A,,q:]. The input, u, can be chosen at random, or be selected
by trying all possible inputs and choosing the one that yields a new state as close as possible to the sample,
x (if U is infinite, then a discrete approximation or analytical technique can be used). NEW_STATE also
implicitly uses the collision detection function to determine whether the new state (and all intermediate
states) satisfy the global constraints. For many problems, this can be performed quickly (“almost constant
time”) using incremental distance computation algorithms [27, 46, 51] by storing the relevant invariants with
each of the RRT vertices. If NEW_STATE is successful, the new state and input are represented in e
and wyeq, respectively. Three situations can occur: Reached, in which the new vertex reaches the sample z
(for the nonholonomic planning case, we might instead have a threshold, ||Znew — || < € for a small € > 0);
Advanced, in which a new vertex Z,¢, 7# = is added to the RRT; Trapped, in which NEW_STATE fails to

produce a state that lies in &X,.ce.

Rapidly Exploring the State Space When moving from the problem shown in Figure 3 to exploring X
for a kinodynamic planning problem, several complications immediately occur: i) the dimension is typically
much higher; ii) the tree must stay within Xye.; iii) drift and other dynamic constraints can yield undesired
motions and biases; iv) there is no natural metric on X for selecting “nearest” neighbors. For the first
complication, approximate nearest neighbor techniques [2, 31] can be employed to help improve performance.

The second complication can make it harder to wander through narrow passages, much like in the case of

13



RRT_BIDIRECTIONAL(Z;nit, Tg0at)
1 To.init(@init); Tp.init(zgoar);
2 for k=1to K do
3 Zrand ¢ RANDOM_STATE();
4 if not (EXTEND(7,, #rqna) = Trapped) then
5 if (EXTEND(7p, Zpew) =Reached) then
6 Return PATH(7,, Tp);
7 SWAP(Ta, To);
8

Return Failure

Figure 7: A bidirectional RRT-based planner.

probabilistic roadmaps [29]. The third complication can be partly overcome by choosing an action that brings
the velocity components of z as close as possible toward the random sample. The fourth complication might
lead to the selection of one metric over another for particular kinodynamic planning problems, if one would
like to optimize performance. In theory, there exists a perfect metric (or pseudo-metric due to asymmetry)
that could overcome all of these complications if it were easily computable. This is the optimal cost (for any
criterion, such as time, energy, etc.) to get from one state to another. Unfortunately, computing the ideal
metric is as hard as solving the original planning problem. In general, we try to overcome these additional
complications while introducing as few heuristics as possible. This enables the planner to be applied with

minor adaptation to a broad class of problems. Further discussion of the metric issue appears in Section 7.

A Bidirectional Planning Algorithm The basic RRT algorithm shown in Figure 5 may be used to
explore the state space, but it is not designed to directly answer a path planning query. For the latter task,
we borrow classical bidirectional search ideas [56] to grow two RRTs, one rooted at the initial state z;pit,
and the other rooted at =4,4;. The algorithm searches for states that are “common” to both trees. Two
states, ¢ and z', are considered to be common if p(z,z') < € some metric p and small ¢ > 0. Our basic
algorithm stops at the first solution trajectory found, but one could continue to grow the trees and maintain
a growing collection of solution trajectories. The “best” solution found so far can be chosen according to a
cost functional based on some criteria (such as execution time or energy expended).

Figure 7 shows the RRT_BIDIRECTIONAL algorithm, which may be compared to the BUILD_RRT
algorithm of Figure 5. RRT_BIDIRECTIONAL divides the computation time between two processes: 1)
exploring the state space; 2) trying to grow the trees into each other. Two trees, 7, and 7, are maintained
at all times until they become connected and a solution is found. In each iteration, one tree is extended, and
an attempt is made to connect the nearest vertex of the other tree to the new vertex. Then, the roles are
reversed by swapping the two trees. The current algorithm is a minor variation of the algorithm presented

in [45]. Previously, in each iteration both trees were incrementally extended toward a random state. The

14



current algorithm attempts to grow the trees into each other half of the time, which has been found to yield
much better performance.

One drawback of using a bidirectional approach is that a discontinuity in the trajectory will generally
exist at the place in which the two trees connect. A number of techniques can be employed to make the
trajectory continuous. Classical shooting techniques can be applied to either half of the trajectory. It might
be possible to slightly perturb the starting point of the second half of the trajectory to force it to begin at
the end of the first half of the trajectory. In this case, the second half of the trajectory would have to be
reintegrated and tested for collision. Finally, it is possible for some systems to apply a steering method to
connect the two trajectories.

If no techniques effectively remove the discontinuity, then one can use a single RRT approach to bring
the system from z;,i to a goal region X,,.. Instead of sampling randomly from X, samples can be biased
toward Xjoq;. For example, with probability p, a sample can be selected from Xj,4; otherwise, it is chosen
random from X. We have performed successful experiments with single-RRT planners and several different
sampling techniques. It is possible to obtain reasonable performance for numerous problems; however, the
bidirectional algorithm is far superior when it can be applied. In practice, we have not experienced any

difficulty applying the bidirectional approach.

5 Experiments with Hovercrafts and Spacecrafts

Several kinodynamic planning experiments were conducted on challenging problems. The algorithm was
implemented in C+4 on an 800MHz Intel Pentium III PC with 256 MB of memory running Linux. The
systems considered involve both non-rotating and rotating rigid objects with velocity and acceleration bounds

obeying L, norms.

Dynamic Model: All experiments used a dynamic model in a non-gravity environment derived from the
Newtonian mechanics of a 3D rigid body[4]. For some examples, the allowable controls restrict the reachable
state space to a subspace of lower dimension than the full 12 dimensions, but a general model was adopted

for simplicity in testing and comparing a variety of vehicle models. We consider a rigid body B of mass M
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and body inertia tensor I, and define the following quantities:

P = [p:pyp:]t global position of the center of mass

a = (90 qy ¢:]7 unit quaternion representing the rotation in SO(3)
v = [vg vy 0]t linear velocity (i.e. v =p)

w = [wy wyw]t angular velocity

The full state vector of B is given by:

(t)
(t)
(t)
(t)

t

p

o]

x(t) =

<

w
The state vector consists of 13 real numbers, but the state space has 12 dimensions due to the constraint
that the quaternion must be of unit norm ||q||*> = 1. Each control u € U defines a force-torque pair (F,7)
acting on the center of mass of B. The equations of motion for the system can be defined as:

v(t)
@(t) - q(t)
= F (2)

M
R®)I*R(t)Tr

p(t)
«t) = fixumy = |
(0)
)

ot

le}
|~

<

where @(t) - q(t) represents the quaternion product between [ 0 w,(t) wy(t) w.(t)]Tand q(t). The rotation
matrix R(t) and its transpose R(t)1 are computed by converting the quaternion q(t) to its equivalent matrix
representation. Details on this conversion, and sample C code for a similar model is given in [4]. Useful

references on the use of quaternions to represent orientation include [66] and [49].

Distance Metric: All experiments utilized a simple metric on X based on a weighted Euclidean distance
for position, linear velocity, and angular velocity, along with a weighted metric on unit quaternions for orien-
tation distance. The function p(xi,x2) attempts to heuristically encode a measure the relative “closeness”

between the pair of states x; and x» with a positive scalar function:
p(x1,%2) = wy|lpy — Pl ” +wy(1—|a; - @ )* + wy[vi — va||* + we|lwr — wa|®

where wy,, wy,, wp, and wp, are weights for position, orientation, linear velocity, and angular velocity respec-
tively. In our implementation, the weights are computed such that all component distances are normalized
on the range [0, 1]. The quaternion scalar product |q; - q,| represents the cosine of the angle formed between

two unit quaternion vectors, yielding a convenient measure of closeness in orientation.
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Example System # Triangles | # Ctrl | At | # Trials || Computation Time (sec)
robot [ obst. | min | max [ avg
Planar Translating Body (4D) 12 228 4 0.25 100 2.39 12.15 4.59
Planar Body with Rotation (6D) 264 228 3 0.25 10 87.65 | 670.06 | 321.66
Translating 3D Body (6D) 12 300 6 0.30 50 19.32 | 220.78 58.12
3D Satellite (12D) 64 1921 8 0.30 10 154.26 | 852.02 352.51
3D Spacecraft (12D) 1289 | 1769 5 0.30 10 292.03 | 1703.94 || 628.07

Table 1: Performance statistics for various examples.

As indicated previously, the ideal metric is the optimal cost to go from one state to another, but its
computation is as hard as the original planning problem. Additional experimentation is needed in order to

evaluate the efficacy of the many different metric functions possible for different systems (See Section 7).

Applying Controls: Each example used a fixed set of controls &/ . Applying no control and simply
allowing the system to drift is also counted as an additional control. We used a fixed At, and applied each
control constantly over this time interval.

Since our dynamic model does not include contacts or collisions, the equations of motion are non-stiff,
and we are able to use a simple fixed-step Euler method for numerical integration. This worked well for both
forwards and backwards integration using a negative time step. For systems with stiff equations, higher-order
methods or implicit integration methods should be used. The magnitude of the integrator time step used
for all examples was dt = 0.01 seconds. Note that this time step is independent of the RRT time step At

used for applying a control, which can be much larger.

Example Systems: For each of the following, we describe the set of controls, the dimension of the reach-
able state space, and details of the computations performed on trial environments. A summary of the results
is listed in Table 1. Standard metric units were used (i.e. lengths in meters [m], forces in newtons [N]). The
workspace bounds were [0, 10m] for each axis. The linear and angular velocity bounds were ||v||*> < 2.0[m/s],

and ||w||? < 1.5[rad/s] respectively.

1) Planar Translating Body (dim X = 4) The first experiment considered a rigid rectangular object
of dimensions [0.4m,0.2m, 0.4m] with a set of translational controls that restrict its motion to the zz plane.
A total of 4 controls were used, consisting of a set of two pairs of opposing forces acting through the center
of mass of the body (there were no torque components to the controls).
NI
Up = 0Oi,7 0 3,10 {,{ O
Lol Lo L) L1
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Figure 8 shows snapshots during various stages of the computation. Anywhere between 400 and 2500 nodes
are explored on average before a solution trajectory is found, with total computation time of approximately

5 seconds on average (see Table 1). The tolerances used for state connection were (e, = 0.05,¢, = 0.1).

2) Planar Body with Rotation (dim X = 6) We extend the previous experiment to consider sys-
tems with rotation. First, we consider the case of a rigid spacecraft object of approximate dimensions
[0.73m,0.13m,0.80m] with thrusters enabling it to rotate in place, but only translate in the forward direc-
tion. This model was inspired by the popular video game “Asteroids”. As in the previous example, the
spacecraft motion is restricted to the xz plane. The state space of this system has 6 degrees of freedom, but

only 3 controls: translate forward, rotate clockwise, and rotate counter-clockwise, are provided:

MR o] o | ot |
Up = 0i,101%,{0 U, = 0{,{ —001 [, 0.01
NS REEREY Lol 'L o [l )
Figure 9 shows the explored states after 13,600 nodes. The average total computation time for this example

was approximately 5 minutes. The tolerances used for state connection were (¢, = 0.075,¢, = 0.08,¢, =

0.1,e, = 0.1).

3) Translating 3D Body (dim X = 6) We consider the case of a free-floating rigid object, such as an
unanchored satellite in space at a fixed orientation. The object is assumed to be equipped with thruster
controls to be used for translating in a non-gravity environment. The satellite has rectangular dimensions
[0.4m,0.2m,0.3m] with three opposing pairs of thrusters along each of its principal axes forming a set of six

controls spanning a 6-dimensional state space (there are no torque components to the controls):

1 -1 0 0 0 0
Ur = 0, 0 | 1|, -11,] 0], 0
0 0 0 0 1 -1

The task is to thrust through a sequence of two narrow passages amidst a collection of obstacles. Fig-
ure 10 shows the RRTs generated during the planning process, and Figure 11 shows one candidate solution
found after a total of 16,300 nodes were explored. The average total computation time for this case was

approximately 1 minute. The tolerances used for state connection were (e, = 0.1, €, = 0.1).

4) 3D Body with Rotation (dim X =12) Finally, we show two results for underactuated rigid bodies
in a 3D world. These examples lead to a 12D state space.
The first result is a fully-orientable satellite model with limited translation. The satellite is assumed to

have momentum wheels that enable it to orient itself along any axis, and a single pair of opposing thruster
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Figure 8: Various stages of state exploration during planning. The top two images show the RRTs after
500 and 1000 nodes, respectively. The bottom two images show the final trees and the computed solution
trajectory after 1582 nodes.
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Figure 9: RRTs of 13,600 nodes and solution trajectory for the planar body with unilateral thrusters that
allow it to rotate freely but translate only in the forward direction.
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Figure 10: The RRTs computed for the task of navigating a sequence of narrow passages for the 3D translation

case.

controls that allow it to translate along the primary axis of the cylinder. This model has a 12-dimensional

state space.

UF

U,

0 0 0 0 0
0 ol,lo],]l1],] -1
0 0 0 0 0
0 0 0 0 0 0
001 |,| —001t |, o |,] o |,lo],]|o0
0 0 0.01 —0.01 0 0

The task of the satellite, modeled as a rigid cylindrical object of radius 0.2m and height 0.6m, is to perform

a collision-free docking maneuver into the cargo bay of the space shuttle model amidst a cloud of obstacles.

Figure 12 illustrates a typical example of the trajectories explored during the planning process, and Figure 13

shows a candidate solution found after 23,800 states were explored. The tolerances used for state connection

were (¢, = 0.15,¢, = 0.1,¢, = 0.3,€¢, = 0.5). The average total computation time was approximately 6

minutes.

The second result, given in Figure 14, shows a fictitious, underactuated spacecraft of approximate di-



Figure 11: Solution trajectory for navigating through a sequence of narrow passages for the 3D translation
case. The initial state is at the lower left; the goal is at the upper right.

mensions [0.65m,0.17m,0.77m] that must maneuver through two narrow gates and enter a hangar that has
a small entrance. There are five inputs, each of which applies a thrust impulse. The possible motions are:

1) forward, 2) up, 3) down, 4) clockwise roll, 5) counterclockwise roll:

[0 0 [0 0 0
Up = 0 |,]02 |,] —025|,]0],|0
L 05 0 0 0 0
[0 0 0 0 0
U, = ol,lo],lo],] o [|,] o
K 0 0] [ o001 —0.01

Planning is performed directly in the 12-dimensional state space. The tolerances used for state connection
were (€, = 0.05,¢, = 0.02,¢, = 0.3,¢, = 0.5). The average total computation time was approximately 11

minutes.
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Figure 12: The RRTs constructed during planning for the fully-orientable satellite model with limited
translation. A total of 23,800 states were explored before a successful candidate solution trajectory was
found.



Figure 13: The docking maneuver computed for the fully-orientable satellite model. The satellite’s initial
state is in the lower left corner, and the goal state is in the interior of the cargo bay of the shuttle.
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e. f.

Figure 14: An underactuated spacecraft that performs complicated maneuvers. The state space has twelve
dimensions, and there are five inputs.
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Figure 15: The attraction sequence has two properties: 1) in terms of the metric, p, any point in A;_; is
closer to any point in A; than any point outside of B;; 2) any point within B; can be attracted to A;.

6 Analysis

In this section, the theoretical behavior of the planning method is characterized. Theorems 1 and 2 express
the rate of converge of the planner, and Theorem 3 establishes that the planner is probabilistically complete
(i.e., the probability that a solution is found tends to one as the number of iterations tends to infinity).
These results represent a significant first step towards gaining a complete understanding of behavior of the
planning algorithm; however, the convergence rate is unfortunately expressed in terms of parameters that
cannot be easily measured. It remains an open problem to characterize the convergence rate in terms of
simple parameters that can be computed for a particular problem. This general difficulty even exists in the
analysis of randomized path planners for the holonomic path planning problem [30, 36].

For simplicity, assume that the planner consists of a single RRT. The bidirectional planner is only slightly
better in terms of our analysis, and a single RRT is easier to analyze. Furthermore, assume that the step
size is large enough so that the planner always attempts to connect xpeqr t0 Trand-

Let A = {Ag, A1,..., A} be a sequence of subsets of X, referred to as an attraction sequence. Let
Ap = {Zinit}- The remaining sets must be chosen with the following rules. For each A4; in A, there exists a

basin, B; C X such that the following hold:
1. Forall z € A;_1,y € A;, and z € X'\ B;, the metric, p, yields p(z,y) < p(z, 2).

2. For all z € B;, there exists an m such that the sequence of inputs {uy,us,...,u,} selected by the

EXTEND algorithm will bring the state into A; C B;.

Finally, it is assumed that A = Xyoai.
Each basin B; can intuitively be considered as both a safety zone that ensures an element of B; will be

selected by the nearest neighbor query, and a potential well that attracts the state into A;. An attraction

26



sequence should be chosen with each A; as large as possible and with &k as small as possible. If the space
contains narrow corridors, then the attraction sequence will be longer and each A; will be smaller. Our
analysis indicates that the planning performance will significantly degrade in this case, which is consistent
with analysis results obtained for randomized holonomic planners [29]. Note that for kinodynamic planning,
the choice of metric, p, can also greatly affect the attraction sequence, and ultimately the performance of
the algorithm.
Let p be defined as
p = min{u(A9)/p(Xpre0)},
which corresponds to a lower bound on the probability that a random state will lie in a particular A;.

The following theorem characterized the expected number of iterations.

Theorem 1 If a connection sequence of length k exists, then the expected number of iterations required to

connect Tinit t0 Xgoar is no more than k/p.

Proof: If an RRT vertex lies in A;_;, and a random sample, z, falls in A;, then the RRT will be connected
to x. This is true because using the first property in the definition of a basin, it follows that one of the
vertices in B; must be selected for extension. Using the second property of the basin, inputs will be chosen
that ultimately generate a vertex in A;.

In each iteration, the probability that the random sample lies in A; is at least p; hence, if A;_; contains
an RRT vertex, then A; will contain a vertex with probability at least p. In the worst-case, the iterations
can be considered as Bernoulli trials in which p is the probability of a successful outcome. A path planning
problem is solved after & successful outcomes are obtained because each success extends the progress of the
RRT from A;_; to A;.

Let C1,Cs,...,C, be ii.d. random variables whose common distribution is the Bernoulli distribution
with parameter p. The random variable C = C; + C3 + - -- 4+ (), denotes the number of successes after n

iterations. Since each C; has the Bernoulli distribution, C' will have a binomial distribution,

(Z) RE(L — h)n*,

in which k is the number of successes. The expectation of the binomial distribution is n/p, which also
represents an upper bound on the expected probability of successfully finding a path. A
The following theorem establishes that the probability of failure decreases exponentially with the number

of iterations.

Theorem 2 If an attraction sequence of length k exists, for a constant § € (0,1], the probability that the

RRT fails to finds a path after n iterations is at most ez (np=2k)
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Proof: The random variable C' from the proof of Theorem 1 has a binomial distribution, which enables
the application of a Chernoff-type bound on its tail probabilities. A theorem from [52] is directly applied
to establish the theorem. If C is binomially distributed, § € (0,1], and g = E[C], then P[C < (1 —d)u] <
exp(ud?/2), in which § = 1 — k/(np). The expression in the exponent can be simplified to —%np + k- %.
Note that e T < 1. This implies that exp(ud?/2) < e (P=2k) A
We now consider probabilistic completeness. Suppose that motions obtained from the incremental simu-
lator are locally constrained. For example, they might arise by integrating & = f(x,u) over some time At.
Suppose that the number of inputs to the incremental simulator is finite, At is constant, no two RRT vertices
lie within a specified € > 0 of each other according to p, and that EXTEND chooses the input at random. It
may be possible eventually to remove some of these restrictions; however, we have not yet pursued this route.
Suppose Tinit and Tyoq lie in the same connected component of a nonconvex, bounded, open, n-dimensional
connected component of an n-dimensional state space. In addition, there exists a sequence of inputs, w1, us,
.., ug, that when applied to x;,i yield a sequence of states, Tinit = To, T1, T2, - .., Th41 = Tgoal- All of

these states lie in the same open connected component of Xy,.ce.

The following establishes the probabilistic completeness of the nonholonomic planner.

Theorem 3 The probability that the RRT initialized at x;n;: will contain T4041 as a vertex approaches one

as the number of vertices approaches infinity.

Proof: The argument proceeds by induction on i. Assume that the RRT contains z; as a vertex after
some finite number of iterations. Consider the Voronoi diagram associated with the RRT vertices. There
exists a positive real number, ¢1, such that pu(Vor(z;)) > ¢; in which Vor(z;) denotes the Voronoi region
associated with z;. If a random sample falls within Vor(z;), the vertex will be selected for extension, and
a random input is applied; thus, x; has probability u(Vor(z;))/u(Xsree) of being selected. There exists a
second positive real number, ¢y (which depends on ¢;), such that the probability that the correct input, u;,
is selected is at least co. If both z; and u; have probability of at least co of being selected in each iteration,
then the probability tends to one that the next step in the solution trajectory will be constructed. This

argument is applied inductively from z; to zy, until the final state z4oq1 = xp+1 is reached. A

7 Conclusions

We have presented the first randomized approach to kinodynamic planning [45]. We believe that this
approach and other randomized kinodynamic planning techniques will prove useful in a wide array of ap-
plications that includes robotics, virtual prototyping, and computer graphics. Recently, our planner has

been applied to automating the flight of helicopters in complicated 3D simulations that contain obstacles
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[26]. We presented a state-space perspective on the kinodynamic planning problem that is modeled after
the configuration-space perspective on basic path planning. We then presented an efficient, randomized
planning technique that is particularly suited to the difficulties that arise in kinodynamic planning. We
implemented this technique and generated experiments for problems of up to 12 degrees-of-freedom. The
planning technique appears to generate good paths; however, we make make no claims that the paths are
optimal or near optimal (this assumption is common for path planning algorithms in C). Some analysis of
the planning algorithm has also been given; however, it remains an open problem to obtain convergence
results expressed in terms of parameters that can be computed for a given example.

Several issues and topics for future research are mentioned below.

Designing Metrics The primary drawback with the RRT-based methods is the sensitivity of the perfor-
mance on the choice of the metric, p. All of the results presented in Section 5 were obtained by assigning
a simple, weighted Euclidean metric for each model (the same metric was used for different collections of
obstacles). Nevertheless, we observed that the computation time varies dramatically for some problems as
the metric is varied. This behavior warrants careful investigation into the effects of metrics. This problem
might seem similar to the choice of a potential function for the randomized potential field planer; however,
since RRTs approach various random samples, the performance degradation is generally not as severe as
a local minimum problem. Metrics that would fail miserably as a potential function could still yield good
performance in an RRT-based planner.

In general, we can characterize the ideal choice of a metric (technically this should be called a pseudo-

metric due to the violation of some metric properties). Consider a cost or loss functional, L, defined as

T
L:/O 1 (t), u(t))dt + 1y (z(T)).

As examples, this could correspond to the distance traveled, the energy consumed, or the time elapsed during

the execution of a trajectory. The optimal cost to go from z to 2’ can be expressed as

) T
' (aa") = min { | e uwya + lf<x<T>>} .

Ideally, p* would make an ideal metric because it indicates “closeness” as the ability to bring the state from
x to ' while incurring little cost. For holonomic planning, nearby states in terms of a weighted Euclidean
metric are easy to reach, but for nonholonomic problems, it can be difficult to design a good metric. The
ideal metric has appeared in similar contexts as the nonholonomic metric (see [41]), the value function [68],
and the cost-to-go function [3, 42]. Of course, computing p* is as difficult as solving the original planning

problem! It is generally useful, however, to consider p* because the performance of RRT-based planners
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seems to generally degrade as p and p* diverge. An effort to make a crude approximation to p*, even if
obstacles are neglected, will probably lead to great improvements in performance. For a particular system,
it may be possible to derive p from several alternatives, including a Lyapunov function, a steering method, a
fitted spline curve, or an optimal control law for a locally-linearized system. In [26], the cost-to-go function
from a hybrid optimal controller was used as the metric in an RRT to generate efficient plans for a nonlinear

model of a helicopter.

Efficient Nearest-Neighbors One of the key bottlenecks in construction of RRTs so far has been nearest
neighbor computations. To date, we have only implemented the naive approach in which every vertex is
compared to the sample state. Fortunately, the development of efficient nearest-neighbor for high-dimensional
problems has been a topic of active interest in recent years (e.g., [2, 31]). Techniques exist that can compute
nearest neighbors (or approximate nearest-neighbors) in near-logarithmic time in the number of vertices,
as opposed to the naive method which takes linear time. Our initial implementation and experimentation
with efficient nearest neighbor techniques indicate dramatic performance improvements (typically an order
of magnitude or two in computation time). Three additional concerns must be addressed to incorporate
efficient nearest neighbor techniques into the algorithm: 1) any data structure that is used for efficient nearest
neighbors must allow incremental insertions to be made efficiently due to the incremental construction of an
RRT, and 2) the method must support whatever metric, p, is chosen, and 3) simple adaptations must be
made to account for the topology of the state space (especially in the case of S' and P2, which arise from

rotations).

Variational Optimization One idea for further investigation might be to construct RRTs to find initial
trajectories, and then employ a variational technique to optimize the trajectories (see, for example, [12, 73]).
Due to randomization, it is obvious that the generated trajectories are not optimal, even within their path
(homotopy) class. For randomized approaches to holonomic planning, it is customary to perform simple path
smoothing to partially optimize the solution paths. Simple and efficient techniques can be employed in this
case; however, in the presence of differential constraints, the problem becomes slightly more complicated.
In general, variational techniques from classical optimal control theory can be used to optimize trajectories
produced by our methods. For many problems, a trajectory that is optimal over the path class that contains
the original trajectory can be obtained. These techniques work by iteratively making small perturbations to
the trajectory by slightly varying the inputs and verifying that the global constraints are not violated. Since
variational techniques require a good initial starting trajectory, they can be considered as complementary to

the RRT-based planners. In other words, the RRT-based planners can produce good guesses for variational
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optimization techniques. The bidirectional planner could be adapted to general trajectories in multiple path
classes. In combination with variational techniques, it might be possible to develop an RRT-based planner
that produces trajectories that improve over time, ultimately converging probabilistically to a globally-

optimal trajectory.

Collision Detection For collision detection in our previous implementations, we have not yet exploited
the fact that RRTs are based on incremental motions. Given that small changes usually occur between
configurations, a data structure can be used that dramatically improves the performance of collision detection
and distance computation [27, 46, 51, 57]. For pairs of convex polyhedral bodies, the methods proposed in
[46, 51] can compute the distance between closest pairs of points in the world in “almost constant time.”
It is expected that these methods could dramatically improve performance. It might be best to take the
largest step possible given the distance measurement (a given distance value can provide a guarantee that the
configuration can change by a prescribed amount without causing collision). This might, however, counteract
the performance benefits of the incremental distance computation methods. Further research is required to

evaluate the tradeoffs.
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