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We present our current progress on the design and
analysis of path planning algorithms based on Rapidly-
exploring Random Trees (RRTs). The basis for our
methods is the incremental construction of search trees
that attempt to rapidly and uniformly explore the state
space, offering benefits that are similar to those ob-
tained by other successful randomized planning meth-
ods. In addition, RRTs are particularly suited for prob-
lems that involve differential constraints. Basic the-
oretical properties of RRT-based planners are estab-
lished. Several planners based on RRTs are discussed
and compared. FEzxperimental results are presented for
planning problems that involve holonomic constraints
for rigid and articulated bodies, manipulation, nonholo-
nomic constraints, kinodynamic constraints, kinematic
closure constraints, and up to twelve degrees of free-
dom. Key open issues and areas of future research are
also discussed.

1 Introduction

Given the vast, growing collection of applications that
involve the design of motion strategies, the successes of
motion planning algorithms have just begun to scratch
its surface. The potential for automating motions is
now greater than ever as similar problems continue
to emerge in seemingly disparate areas. The tradi-
tional needs of roboticists continue to expand in efforts
to automate mobile robots, manipulators, humanoids,
spacecraft, etc. Researchers in computer graphics and
virtual reality have increasing interests in automating
the animations of life-like characters or other moving
bodies. In the growing field of computational biology,
many geometric problems have arisen, such as study-
ing the configuration spaces of flexible molecules for
protein-ligand docking and drug design. Virtual pro-
totyping is a rapidly-expanding area that allows the
evaluation of proposed mechanical designs in simula-
tion, in efforts to avoid the costs of constructing phys-

ical prototypes. Motion planning techniques have al-
ready been applied to assembly problems in this area
[9]. As the power and generality of planning techniques
increase, we expect that more complicated problems
that include differential constraints can be solved, such
as the evaluation of vehicle performance and safety
through dynamical simulation conducted by a virtual
“stunt driver.”

As we approach applications of increasing difficulty,
it becomes clear that planning algorithms need to han-
dle problems that involve a wide variety of models, high
degrees of freedom, complicated geometric constraints,
and finally, differential constraints. Although exist-
ing algorithms address some of these concerns, there
is relatively little work that addresses all of them si-
multaneously. This provides the basis for the work
presented in this paper, which presents randomized,
algorithmic techniques for path planning that are par-
ticularly suited for problems that involve differential
constraints.

We present an overview of the progress on our de-
velopment of Rapidly-exploring Random Trees (RRTs)
[29]. The results and discussion presented here summa-
rize and extend the work presented in [30, 22]. In [30],
we presented the first randomized approach to kinody-
namic trajectory planning, and applied it to problems
that involve up to twelve-dimensional state spaces with
nonlinear dynamics and obstacles (for problems with
moving obstacles, a similar randomized approach has
been proposed more recently, in [20]). In [22], we pre-
sented and analyzed a holonomic path planner that
gives real-time performance for many challenging prob-
lems. RRTs build on ideas from optimal control theory
[5], nonholonomic planning (see [27] for an overview),
and randomized path planning [1, 19, 36]. The ba-
sic idea is to use control-theoretic representations, and
incrementally grow a search tree from an initial state
by applying control inputs over short time intervals to



reach new states. Each vertex in the tree represents a
state, and each directed edge represents an input that
was applied to reach the new state from a previous
state. When a vertex reaches a desired goal region,
an open-loop trajectory from the initial state is repre-
sented.

For problems that involve low degrees of freedom,
classical dynamic programming ideas can be employed
to yield numerical optimal control solutions for a broad
class of problems [5, 24, 28]. Since control theorists
have traditionally preferred feedback solutions, the rep-
resentation takes the form of a mesh over which cost-
to-go values are defined using interpolation, enabling
inputs to be selected over any portion of the state
space. If open-loop solutions are the only require-
ment, then each cell in the mesh could be replaced
by a vertex that represents a single state within the
cell. In this case, control-theoretic numerical dynamic
programming techniques can often be reduced to the
construction of a tree grown from an initial state (re-
ferred to as forward dynamic programming [24]). This
idea has been proposed in path planning literature for
nonholonomic [4] planning and kinodynamic planning
in [13]. Because these methods are based on dynamic
programming and systematic exploration of a grid or
mesh, their application is limited to problems with low
degrees of freedom.

We would like to borrow some of the ideas from
numerical optimal control techniques, while weaken-
ing the requirements enough to obtain methods that
can apply to problems with high degrees of freedom.
As is common in most of path planning research, we
forego trying to obtain optimal solutions, and attempt
to find solutions that are “good enough,” as long as
they satisfy all of the constraints. This avoids the use
of dynamic programming and systematic exploration
of the space; however, a method is needed to guide the
search in place of dynamic programming.

Inspired by the success of randomized path planning
techniques and Monte-Carlo techniques in general for
addressing high-dimensional problems, it is natural to
consider adapting existing planning techniques to our
problems of interest. The primary difficulty with many
existing techniques is that, although powerful for stan-
dard path planning, they do not naturally extend to
general problems that involve differential constraints.
The randomized potential field method [3], while effi-
cient for holonomic planning, depends heavily on the
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choice of a good heuristic potential function, which
could become a daunting task when confronted with
obstacles, and differential constraints. In the prob-
abilistic roadmap approach [1, 19], a graph is con-
structed in the configuration space by generating ran-
dom configurations and attempting to connect pairs
of nearby configurations with a local planner that will
connect pairs of configurations. The assumption is that
the same roadmap will be used for multiple queries. For
planning of holonomic systems or steerable nonholo-
nomic systems (see [27] and references therein), the lo-
cal planning step might be efficient; however, in general
the connection problem can be as difficult as design-
ing a nonlinear controller, particularly for complicated
nonholonomic and dynamical systems. The probabilis-
tic roadmap technique might require the connections
of thousands of configurations or states to find a so-
lution, and if each connection is akin to a nonlinear
control problem, it seems impractical many problems
with differential constraints.

2 Problem Formulation

The class of problems considered in this paper can be
formulated in terms of six components:

1. State Space: A topological space, X
2. Boundary Values: z;,;; € X and Xy C X

3. Collision Detector: A function, D : X —
{true, false}, that determines whether global con-
straints are satisfied from state x. This could be
a binary-valued or real-valued function.

4. Inputs: A set, U, which specifies the complete set
of controls or actions that can affect the state.

5. Incremental Simulator: Given the current
state, z(t), and inputs applied over a time interval,
{u(t")|t < t' <t+ At}, compute z(t + At).

6. Metric: A real-valued function, p : X x X —
[0, 00), which specifies the distance between pairs
of points in X.

Path planning will generally be viewed as a search
in a state space, X, for a continuous path from an ini-
tial state, xin;e to a goal region Xy, C X or goal
state Tgoar € X. It is assumed that a complicated
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set of global constraints is imposed on X, and any so-
lution path must keep the state within this set. A
collision detector reports whether a given state, x, sat-
isfies the global constraints. We generally use the no-
tation Xy,.. to refer to the set of all states that satisfy
the global constraints. Local, differential constraints
are imposed through the definition of a set of inputs
(or controls) and an incremental simulator. Taken to-
gether, these two components specify possible changes
in state. The incremental simulator can be consid-
ered as the response of a discrete-time system (or a
continuous-time system that is approximated in dis-
crete time). Finally, a metric is defined to indicate
the closeness of pairs of points in the state space. This
metric will be used in Section 3, when the RRT is intro-
duced. It will generally be assumed that a single path
planning query is presented, as opposed to performing
precomputation for multiple queries, as in [1, 19].

Basic (Holonomic) Path Planning Path planning
can generally be viewed as a search in a configura-
tion space, C, in which each ¢ € C specifies the po-
sition and orientation of one or more geometrically-
complicated bodies in a 2D or 3D world [33, 25]. The
path planning task is to compute a continuous path
from an initial configuration, ¢, to a goal configura-
tion, qgoal- Thus, X = C; Tinit = (init; Tgoal = Yqgoal,
and Xfree = Cfree, Which denotes the set of config-
urations for which these bodies do not collide with
any static obstacles in the world. The obstacles are
modeled completely in the world, but an explicit rep-
resentation of Xy,.. is not available. However, using
a collision detection algorithm, a given configuration
can be tested. (To be more precise, we usually em-
ploy a distance-computation algorithm that indicates
how close the geometric bodies are to violating the con-
straints in the world. This can be used to ensure that
intermediate configurations are collision free when dis-
crete jumps are made by the incremental simulator.)
The set, U, of inputs is the set of all velocities & such
that ||#]| < ¢ for some positive constant c. The incre-
mental simulator produces a new state by integration
to obtain, e = = + uAt, for any given input v € U.

Nonholonomic Path Planning Nonholonomic
planning [26] addresses problems that involve nonin-
tegrable constraints on the state velocities, in addition
to the components that appear in the basic path plan-
ning problems. These constraints often arise in many
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contexts such as wheeled-robot systems [27], and ma-
nipulation by pushing [35]. A recent survey appears in
[27]. The constraints often appear in the implicit form
hi(g,q) = 0 for some i from 1 to k < N (N is the dimen-
sion of C). By the implicit function theorem, the con-
straints can also be expressed in control-theoretic form,
¢ = f(q,u), in which u is an input chosen from a set of
inputs U. Using our general notion, x replaces g to ob-
tain & = f(z,u). This form is often referred to as the
state transition equation or equation of motion. Using
the state transition equation, an incremental simulator
can be constructed by numerical integration (using, for
example Runge-Kutta techniques).

Kinodynamic! Path Planning For kinodynamic
planning, constraints on both velocity and acceler-
ation exist, yielding implicit equations of the form
hi(d,q,9) = 0 [6, 8 10, 11, 13, 12, 14, 45, 46]. A
state, © € X, is defined as © = (q,¢), for ¢ € C. Us-
ing the state space representation, this can be simply
written as a set of m implicit equations of the form
Gi(z,z) = 0, for i = 1,...,m and m < 2N. The
implicit function theorem can again be applied to ob-
tain a state transition equation. The collision detection
component may also include global constraints on the
velocity, since ¢ is part of the state vector.

Other Problems A variety of other problems fit
within our problem formulation, and can be ap-
proached using the techniques in this paper. In gen-
eral, any open-loop trajectory design problem can for-
mulated because the models are mostly borrowed from
control theory. For example, the planner might be used
to compute a strategy that controls an electrical circuit,
or an economic system. In some applications, a state
transition equation might not be known, but this does
not present a problem. For example, a physical simu-
lator might be developed by engineers for simulating a
proposed racing car design. The software might sim-
ply accept control inputs at some sampling rate, and
produce new states. This could serve directly as the
incremental simulator for our approach. Other minor
variations of the formulation can be considered. Time-
varying problems can be formulated by augmenting the

In nonlinear control literature, kinodynamic planning
for underactuated systems is encompassed by the definition
of nonholonomic planning. Using control-theoretic termi-
nology, the task is to design open-loop trajectories for non-
linear systems with drift.
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state space with a time. State-dependent inputs sets
can also be considered. For example, a robot engaged
in a grasping task might have different inputs avail-
able than while navigating. Depending on the state,
different decisions would have to be made. Problems
that involve kinematic closure constraints can also be
addressed; an example is shown in Figure 14.

3 Rapidly-Exploring Random Trees

The Rapidly-exploring Random Tree (RRT) was in-
troduced in [29] as a planning algorithm to quickly
search high-dimensional spaces that have both alge-
braic constraints (arising from obstacles) and differ-
ential constraints (arising from nonholonomy and dy-
namics). The key idea is to bias the exploration toward
unexplored portions of the space by sampling points in
the state space, and incrementally “pulling” the search
tree toward them. At least two other randomized path
planning techniques have been proposed that generate
an incremental search tree in the configuration space
(for holonomic path planning): the Ariadne’s clew al-
gorithm [37, 36] and the planners in [18, 50]. Intu-
itively, these planners attempt to “push” the search
tree away from previously-constructed vertices, con-
trasting the RRT, which uses the surrounding space
to “pull” the search tree, ultimately leading to uni-
form coverage of the state space. To the best of our
knowledge, a randomized search tree approach has not
been proposed previously for nonholonomic or kinody-
namic planning. Perhaps the most related approaches
are [47, 44], in which the probabilistic roadmap method
is combined with nonholonomic steering techniques to
plan paths for wheeled mobile robot systems.

The basic RRT construction algorithm is given in
Figure 1. A simple iteration in performed in which
each step attempts to extend the RRT by adding a new
vertex that is biased by a randomly-selected state. The
EXTEND function, illustrated in Figure 2, selects the
nearest vertex already in the RRT to the given sample
state. The “nearest” vertex is chosen according to the
metric, p. The function NEW_STATE makes a motion
toward = by applying an input v € U for some time
increment At¢. This input can be chosen at random, or
selected by trying all possible inputs and choosing the
one that yields a new state as close as possible to the
sample, z (if U is infinite, then an approximation or
analytical technique can be used). In the case of holo-
nomic planning, the optimal value for v can be chosen
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BUILD RRT(Zinit)
1 T.init(mmit);
2 fork=1to K do
3 Trand ¢ RANDOM_STATE();
4 EXTEND(T, Zrand);
5 Return 7

EXTEND(T, x)
1 Znear ¢« NEAREST_NEIGHBOR(z, T);
2  if NEW_STATE(z, Znear, Lnew, Unew) then
3 T .add_vertex(Tnew);
4 T .add-edge(Tnear, Tnew, Unew);
5 if Tpew = 2 then
6 Return Reached;
7 else

8 Return Advanced,

9 Return Trapped;

Figure 1: The basic RRT construction algorithm.

ff-f/xnew
‘\ T T —
X

X
near
X. .
init

Figure 2: The EXTEND operation.

easily by a simple vector calculation. NEW _STATE
also implicitly uses the collision detection function to
determine whether the new state (and all intermediate
states) satisfy the global constraints. For many prob-
lems, this can be performed quickly (“almost constant
time”) using incremental distance computation algo-
rithms [16, 31, 38] by storing the relevant invariants
with each of the RRT vertices. If NEW_STATE is suc-
cessful, the new state and input are represented in Z,eq
and upeq, respectively. Three situations can occur:
Reached, in which the new vertex reaches the sample z
(for the nonholonomic planning case, we might instead
have a threshold, ||Znew — || < € for a small € > 0); Ad-
vanced, in which a new vertex x,e,, 7 « is added to the
RRT; Trapped, in which NEW_STATE fails to produce
a state that lies in X¢pee. The left column of Figure
3 shows an RRT for a holonomic planning problem,
constructed in a 2D square space. The right column
shows the Voronoi diagram of the RRT vertices; note
that the probability that a vertex is selected for exten-
sion is proportional to the area of its Voronoi region.
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Figure 3: An RRT is biased by large Voronoi regions to
rapidly explore, before uniformly covering the space.

This biases the RRT to rapidly explore. In Section 4 it
is shown that RRTs also arrive at a uniform coverage
of the space.

4 Analysis of RRT's

This section provides some analysis of RRTs, and in-
dicates several open problems for future investigation.
A key result shown so far is that the distribution of
the RRT vertices converges to the sampling distribu-
tion, which is usually uniform. This currently has been
shown for holonomic planning in a nonconvex state
space. We have also verified the results through sim-
ulations and chi-square tests. We have generally had
many experimental successes, indicated in Section 6,
that far exceed our current analysis capabilities. Con-

siderable effort remains to close the gap between our
experimental success, and the analysis that supports
the success.

The limiting distribution of vertices Let Dy(z)
denote a random variable whose value is the distance
of z to the closest vertex in G, in which k is the number
of vertices in an RRT. Let d; denote the value of Dy,.
Let € denote the incremental distance traveled in the
EXTEND procedure (the RRT step size).

Consider the case of a holonomic planning problem,
in which & = u (the incremental simulator permits mo-
tion in any direction). The first lemma establishes that
the RRT will (converging in probability) come arbitrar-
ily close to any point in a convex space.

Lemma 1 Suppose Xyfree s a convez, bounded, open,

n-dimensional subset of an n-dimensional state space.
For any * € Xjfree and positive constant € > 0,
lim Pldp(z) < el =1.

k—o0

The proofs for all propositions, except Theorems 5-7,
appear in [22].

The next lemma extends the result from convex
spaces to nonconvex spaces.

Lemma 2 Suppose Xy @5 a nonconvez, bounded,
open, n-dimensional connected component of an n-
dimensional state space. For any x € Xfpee and posi-
tive real number € > 0, then 7}1}11;0 Pldp(z) < €] =1.

For holonomic path planning, this immediately im-
plies the following;:

Theorem 3 Suppose iy and Tgoa lie in  the
same connected component of a nonconvex, bounded,
open, n-dimensional connected component of an n-
dimensional state space. The probability that an RRT
constructed from xn; will find a path to Tgoa ap-
proaches one as the number of RRT vertices approaches
infinity.

This establishes probabilistic completeness, as consid-
ered in [19], of the basic RRT.

The next step is to characterize the limiting distribu-
tion of the RRT vertices. Let X denote a vector-valued
random variable that represents the sampling process
used to construct an RRT. This reflects the distribution
of samples that are returned by the RANDOM_STATE



function in the EXTEND algorithm. Usually, X is
characterized by a uniform probability density function
over X free; however, we will allow X to be character-
ized by any continuous probability density function.
Let X} denote a vector-valued random variable that
represents the distribution of the RRT vertices after k
iterations.

Theorem 4 X converges to X in probability.

We now consider the more general case. Suppose
that motions obtained from the incremental simulator
are locally constrained. For example, they might arise
by integrating & = f(x,u) over some time A¢. Suppose
that the number of inputs to the incremental simula-
tor is finite, At is constant, no two RRT vertices lie
within a specified € > 0 of each other according to p,
and that EXTEND chooses the input at random. It
may be possible eventually to remove some of these re-
strictions; however, we have not yet pursued this route.
Suppose Tinit and Tgoq lie in the same connected com-
ponent of a nonconvex, bounded, open, n-dimensional
connected component of an n-dimensional state space.
In addition, there exists a sequence of inputs, u, us,
..., ug, that when applied to z;,; yield a sequence of
states, Tinit = To, T1, T2, ..., Tht1 = Tgoal- All of
these states lie in the same open connected component
of Xfree-

The following establishes the probabilistic complete-
ness of the nonholonomic planner.

Theorem 5 The probability that the RRT initialized
at Tingt will contain xg0q1 as a verter approaches one
as the number of vertices approaches infinity.

Overview of Proof: The argument proceeds by
induction on i. Assume that the RRT contains z; as
a vertex after some finite number of iterations. Con-
sider the Voronoi diagram associated with the RRT
vertices. There exists a positive real number, ¢;, such
that u(Vor(z;)) > ¢ in which Vor(z;) denotes the
Voronoi region associated with z;. If a random sam-
ple falls within Vor(z;), the vertex will be selected
for extension, and a random input is applied; thus, z;
has probability p(Vor(z;))/ (X ree) of being selected.
There exists a second positive real number, ¢o (which
depends on ¢ ), such that the probability that the cor-
rect input, u;, is selected is at least co. If both z; and
u; have probability of at least co of being selected in
each iteration, then the probability tends to one that
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the next step in the solution trajectory will be con-
structed. This argument is applied inductively from

x1 to zy, until the final state 4001 = T41 is reached.
A

Convergence Rate Theorems 6 and 7 express the
rate of converge of the planner. These results represent
a significant first step towards gaining a complete un-
derstanding of behavior of RRT-based planning algo-
rithms; however, the convergence rate is unfortunately
expressed in terms of parameters that cannot be easily
measured. It remains an open problem to characterize
the convergence rate in terms of simple parameters that
can be computed for a particular problem. This gen-
eral difficulty even exists in the analysis of randomized
path planners for the holonomic path planning problem
[18, 23].

For simplicity, assume that the planner consists of a
single RRT. The bidirectional planner is only slightly
better in terms of our analysis, and a single RRT is
easier to analyze. Furthermore, assume that the step
size is large enough so that the planner always attempts
to connect Typeqr 1O Trand-

Let A = {4, A41,...,A} be a sequence of subsets
of X, referred to as an attraction sequence. Let Ag =
{Zinit}. The remaining sets must be chosen with the
following rules. For each A; in A, there exists a basin,
B; C X such that the following hold:

1. For all z € 4,1, y € A;, and z € X\ B;, the
metric, p, yields p(z,y) < p(z, z).

2. For all z € B;, there exists an m such that the
sequence of inputs {uy, us, . .., u.,} selected by the
EXTEND algorithm will bring the state into A4; C
B;.

Finally, it is assumed that Ay = Xgoai.

Each basin B; can intuitively be considered as both
a safety zone that ensures an element of B; will be
selected by the nearest neighbor query, and a poten-
tial well that attracts the state into A;. An attrac-
tion sequence should be chosen with each A; as large
as possible and with k£ as small as possible. If the
space contains narrow corridors, then the attraction
sequence will be longer and each A; will be smaller.
Our analysis indicates that the planning performance
will significantly degrade in this case, which is con-
sistent with analysis results obtained for randomized
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holonomic planners [17]. Note that for kinodynamic
planning, the choice of metric, p, can also greatly af-
fect the attraction sequence, and ultimately the perfor-
mance of the algorithm.

Using p to represent measure, let p be defined as
b= miin{,u(Ai)/ll(Xfree)}:

which corresponds to a lower bound on the probability
that a random state will lie in a particular A;.

The following theorem characterizes the expected
number of iterations required to find a solution.

Theorem 6 If a connection sequence of length k ex-
ists, then the expected number of iterations required to
connect Ginit t0 qgoar i N0 more than k/p.

Proof: If an RRT vertex lies in 4; 1, and a random
sample, z, falls in A;, then the RRT will be connected
to x. This is true because using the first property in
the definition of a basin, it follows that one of the ver-
tices in B; must be selected for extension. Using the
second property of the basin, inputs will be chosen that
ultimately generate a vertex in A;.

In each iteration, the probability that the random
sample lies in A; is at least p; hence, if A;_; contains
an RRT vertex, then A; will contain a vertex with prob-
ability at least p. In the worst-case, the iterations can
be considered as Bernoulli trials in which p is the prob-
ability of a successful outcome. A path planning prob-
lem is solved after k successful outcomes are obtained
because each success extends the progress of the RRT
from A;_; to A;.

Let C1,Cy,...,C, be ii.d. random variables whose
common distribution is the Bernoulli distribution with
parameter p. The random variable C = C; +Cy+-- -+
C), denotes the number of successes after n iterations.
Since each C; has the Bernoulli distribution, C' will
have a binomial distribution,

(Z) hF(1— )"k,

in which k is the number of successes. The expectation
of the binomial distribution is n/p, which also repre-
sents an upper bound on the expected probability of
successfully finding a path. A

The following theorem establishes that the probabil-
ity of success increases exponentially with the number
of iterations.

Theorem 7 If an attraction sequence of length k ex-
ists, for a constant 6 € (0,1], the probability that
the RRT finds a path after n iterations is at least
1 — exp(—npd?/2), in which § =1 — k/(np).

Proof: The random variable C' from the proof of The-
orem 6 has a binomial distribution, which enables the
application of a Chernoff-type bound on its tail proba-
bilities. The following theorem [39] is directly applied
to establish the theorem. If C is binomially distributed,
d € (0,1], and p = E[C], then P[C < (1 —d)u] <
exp(ud?/2). A

An RRT in a Large Disc In the limit as the
number of iterations approaches infinity, the RRT be-
comes uniformly distributed, but what happens when
the RRT is placed in a “large” space? Intuitively, it
seems that the best strategy would be to grow the
tree away from the initial state as quickly as possi-
ble. To determine whether this occurs, we performed
many simulation experiments (each with hundreds of
thousands of iterations) to characterize how an RRT
grows in the limit case of a disc with a radius that ap-
proaches infinity. Consider the case of a 2D state space
and holonomic planning. Figure 4.a shows a typical re-
sult, in which the RRT has three major branches, each
roughly 120 degrees apart. This behavior was repeat-
edly observed for the 2D case, although the orientation
of the branches is random. In higher dimensions, we
have observed that the RRT makes n + 1 branches in
an n-dimensional space. The branches also have equal
separation from each other (they appear to touch the
vertices of a regular (n + 1)-simplex, centered at the
origin. This gives experimental evidence that in the
expected sense, the RRT grows outward from the ori-
gin at a rate that is linear in the number of iterations,
and decreases moderately with the number of dimen-
sions. It remains an open question to confirm these
observations by proving the number and directions of
these branches.

Relationship to optimality Another observation
that we have made through simulation experiments
is that the paths in a holonomic RRT, while jagged,
are not too far from the shortest path (recall Figure
3). This is not true for paths generated by a simpler
technique, such as Brownian motion. For paths in the
plane, we have performed repeated experiments that
compare the distance of randomly-chosen RRT vertices



Figure 4: a) The convez hull of an RRT in an “infinitely”
large disc; b) a 2D RRT that was constructed using biased
sampling.

to the root by following the RRT path to the Euclidean
distance to the root. Experiments were performed in a
square region in the plane. The expected ratio of RRT-
path distance to Euclidean distance is consistently be-
tween 1.3 and 1.7. It remains an open question to prove
an upper bound on the expected path length, with re-
spect to optimal solutions (e.g., such as a ratio bound
of two).

5 Designing Path Planners

Sections 3 and 4 introduced the basic RRT and ana-
lyzed its exploration properties. Now the focus is on
developing path planners using RRTs. We generally
consider the RRT as a building block that can be used
to construct an efficient planner, as opposed to a path
planning algorithm by itself. For example, one might
use an RRT to escape local minima in a randomized
potential field path planner [3]. In [48], an RRT was
used as the local planner for the probabilistic roadmap
planner. We present several alternative RRT-based
planners in this section. The recommended choice de-
pends on several factors, such as whether differential
constraints exist, the type of collision detection algo-
rithm, or the efficiency of nearest neighbor computa-
tions.

Single-RRT Planners In principle, the basic RRT
can be used in isolation as a path planner because its
vertices will eventually cover a connected component of
Xfree, coming arbitrarily close to any specified zg0a;.
The problem is that without any bias toward the goal,
convergence is often slow. An improved planner, called
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RRT-GoalBias, can be obtained by replacing RAN-
DOM_STATE in Figure 2 with a function that tosses
a biased coin to determine what should be returned. If
the coin toss yields “heads”, then 404 is returned; oth-
erwise, a random state is returned. Even with a small
probability of returning heads (such as 0.05), RRT-
GoalBias usually converges to the goal much faster
than the basic RRT. If too much bias is introduced;
however, the planner begins to behave like a random-
ized potential field planner that is trapped in a local
minimum. An improvement called RRT-GoalZoom re-
places RANDOM_STATE with a decision, based on a
biased coin toss, that chooses a random sample from ei-
ther a region around the goal or the whole state space.
The size of the region around the goal is controlled by
the closest RRT vertex to the goal at any iteration.
The effect is that the focus of samples gradually in-
creases around the goal as the RRT draws nearer. This
planner has performed quite well in practice; however,
it is still possible that performance is degraded due
to local minima. In general, it seems best to replace
RANDOM_STATE with a sampling scheme that draws
states from a nonuniform probability density function
that has a “gradual” bias toward the goal. Figure 4.b
shows an example of an RRT that was constructed by
sampling states from a probability density that assigns
equal probability to concentric circular rings. There
are still many interesting research issues regarding the
problem of sampling. It might be possible to use some
of the sampling methods that were proposed to improve
the performance of probabilistic roadmaps [1, 7].

One more issue to consider is the size of the step that
is used for RRT construction. This could be chosen dy-
namically during execution on the basis of a distance
computation function that is used for collision detec-
tion. If the bodies are far from colliding, then larger
steps can be taken. Aside from following this idea to
obtain an incremental step, how far should the new
state, Tnew appear from z,e.-? Should we try to con-
nect Tpeqr t0 Trgnq? Instead of attempting to extend
an RRT by an incremental step, EXTEND can be iter-
ated until the random state or an obstacle is reached,
as shown in the CONNECT algorithm description in
Figure 5. CONNECT can replace EXTEND, yield-
ing an RRT that grows very quickly, if permitted by
collision detection constraints and the differential con-
straints. One of the key advantages of the CONNECT
function is that a long path can be constructed with
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CONNECT(T, z)
1 repeat
2 S < EXTEND(T, z);
3 until not (S = Advanced
4 Return S;

Figure 5: The CONNECT function.

RRT_BIDIRECTIONAL(Zinir, Zgoat)
To-init(zinit); Tp-init(Tgoar);
for k=1 to K do
Zrand < RANDOM_STATE();
if not (EXTEND(7., Zrqna) =Trapped) then
if (EXTEND(T7s, Znew) =Reached) then
Return PATH(7,, Tp);
SWAP(Ta, Ts);

Return Failure

OO UL WN

Figure 6: A bidirectional RRT-based planner.

only a single call to the nearest-neighbor algorithm.
This advantage motivates the choice of a greedier al-
gorithm; however, if an efficient nearest-neighbor al-
gorithm (e.g., [2]) is used, as opposed to the obvious
linear-time method, then it might make sense to be
less greedy. After performing dozens of experiments
on a variety of problems, we have found CONNECT
to yield the best performance for holonomic planning
problems, and EXTEND seems to be the best for non-
holonomic problems. One reason for this difference is
that CONNECT places more faith in the metric, and
for nonholonomic problems it becomes more challeng-
ing to design good metrics.

Bidirectional Planners Inspired by classical bidi-
rectional search techniques [41], it seems reasonable to
expect that improved performance can be obtained by
growing two RRTs, one from z;,;; and the other from
Zgoal; @ solution is found if the two RRTs meet. For a
simple grid search, it is straightforward to implement a
bidirectional search; however, RRT construction must
be biased to ensure that the trees meet well before cov-
ering the entire space, and to allow efficient detection
of meeting.

Figure 5 shows the RRT_BIDIRECTIONAL algo-
rithm, which may be compared to the BUILD_RRT al-
gorithm of Figure 1. RRT_BIDIRECTIONAL divides
the computation time between two processes: 1) ex-
ploring the state space; 2) trying to grow the trees into
each other. Two trees, 7, and 7, are maintained at

all times until they become connected and a solution
is found. In each iteration, one tree is extended, and
an attempt is made to connect the nearest vertex of
the other tree to the new vertex. Then, the roles are
reversed by swapping the two trees. Growth of two
RRTs was also proposed in [30] for kinodynamic plan-
ning; however, in each iteration both trees were incre-
mentally extended toward a random state. The current
algorithm attempts to grow the trees into each other
half of the time, which has been found to yield much
better performance.

Several variations of the above planner can also be
considered. Either occurrence of EXTEND may be
replaced by CONNECT in RRT_BIDIRECTIONAL.
Each replacement makes the operation more aggres-
sive. If the EXTEND in Line 4 is replaced with CON-
NECT, then the planner aggressively explores the state
space, with the same tradeoffs that existed for the
single-RRT planner. If the EXTEND in Line 5 is re-
placed with CONNECT, the planner aggressively at-
tempts to connect the two trees in each iteration. This
particular variant was very successful at solving holo-
nomic planning problems. For convenience, we refer to
this variant as RRT-ExtCon, and the original bidirec-
tional algorithm as RRT-ExtExt. Among the variants
discussed thus far, we have found RRT-ExtCon to be
most successful for holonomic planning [22], and RRT-
ExtExt to be best for nonholonomic problems. The
most aggressive planner can be constructed by replac-
ing EXTEND with CONNECT in both Lines 4 and 5,
to yield RRT-ConCon.

Through extensive experimentation over a wide va-
riety of examples, we have concluded that, when appli-
cable, the bidirectional approach is much more efficient
than a single RRT approach. One shortcoming of us-
ing the bidirectional approach for nonholonomic and
kinodynamic planning problems is the need to make a
connection between a pair of vertices, one from each
RRT. For a planning problem that involves reaching
a goal region from an initial state, no connections are
necessary using a single-RRT approach. The gaps be-
tween the two trajectories can be closed in practice by
applying steering methods [27], if possible, or classical
shooting methods, which are often used for numerical
boundary value problems.

Other Approaches If a dual-tree approach offers
advantages over a single tree, then it is natural to ask
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whether growing three or more RRTs might be even
better. These additional RRTs could be started at ran-
dom states. Of course, the connection problem will be-
come more difficult for nonholonomic problems. Also,
as more trees are considered, a complicated decision
problem arises. The computation time must be di-
vided between attempting to explore the space and at-
tempting to connect RRT's to each other. It is also not
clear which connections should be attempted. Many
research issues remain in the development of this and
other RRT-based planners.

It is interesting to consider the limiting case in which
a new RRT is started for every random sample, & ,qpnq-
Once the single-vertex RRT is generated, the CON-
NECT function from Figure 5 can be applied to every
other RRT. To improve performance, one might only
consider connections to vertices that are within a fixed
distance of 4,4, according to the metric. If a con-
nection succeeds, then the two RRTs are merged into
a single graph. The resulting algorithm simulates the
behavior of the probabilistic roadmap approach to path
planning [19]. Thus, the probabilistic roadmap can be
considered as an extreme version of an RRT-based al-
gorithm in which a maximum number of separate RRT's
are constructed and merged.

6 Implementations and Experiments

In this section, results for four different types of prob-
lems are summarized: 1) holonomic planning, 2) non-
holonomic planning, 3) kinodynamic planning, and
4) planning for systems with closed kinematic chains.
Presently, we have constructed two planning systems
based on RRTs. One is written in Gnu C++ and
LEDA, and experiments were conducted on a 500Mhz
Pentium III PC running Linux. This implementa-
tion is very general, allowing many planning variants
and models to be considered; however, it is limited to
planar obstacles and robots, and performs naive col-
lision detection. The software can be obtained from
http://janowiec.cs.iastate.edu/~lavalle/rrt/. The sec-
ond implementation is written in SGI C++ and SGI’s
Openlnventor library, and experiments were conducted
on a 200MHz SGI Indigo2 with 128 MB. This imple-
mentation considers 3D models, and was particularly
designed inclusion in a software platform for automat-
ing the motions of digital actors [21]. Currently, we
are constructing a third implementation, which is ex-
pected to be general-purpose, support 3D models, and
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be based on freely-available collision detection and ef-
ficient nearest neighbor libraries.

Holonomic planning experiments Through nu-
merous experiments, we have found RRT-based plan-
ners to be very efficient for holonomic planning. Note
that our planners attempt to find a solution with-
out performing precomputations over the entire state
space, and are therefore suited for single-query path
planning problems, in contrast to the probabilistic
roadmap method. It is easy to construct single-query
examples on which an RRT-based planner will be su-
perior by terminating before covering the entire state
space, and it is easy to construct multiple-query prob-
lems in which the probabilistic roadmap method will be
superior by repeatedly using its precomputed roadmap.

Most of the experiments in this section were con-
ducted on the 200MHz SGI Indigo2. More holonomic
planning experiments are presented in [22]. The CON-
NECT function is most effective when one can expect
relatively open spaces for the majority of the planning
queries. We first performed hundreds of experiments
on over a dozen examples for planning the motions of
rigid objects in 2D, resulting in 2D and 3D configu-
ration spaces. Path smoothing was performed on the
final paths to reduce jaggedness. Figure 7 depicts a
computed solution for a 3D model of a grand piano
moving from one room to another amidst walls and
low obstacles. Several tricky rotations are required of
the piano in order to solve this query.

Figure 8 shows a human character playing chess.
Each of the motions necessary to reach, grasp, and
reposition a game piece on the virtual chess board were
generated using the RRT-ExtCon planner in an aver-
age of 2 seconds on the 200 MHz SGI Inidigo2. The
human arm is modeled as a 7-DOF kinematic chain,
and the entire scene contains over 8,000 triangle primi-
tives. The 3D collision checking software used for these
experiments was the RAPID library based on OBB-
Trees developed by the University of North Carolina
[32]. The speed of the planner allows for the user to
interact with the character in real-time, and even en-
gage in an interactive game of “virtual chess”.

The final holonomic planning example, shown in Fig-
ure 9, was solved using the RRT-ExtExt planner. This
problem was presented in [7] as a test challenge for ran-
domized path planners due to the narrow passages that
exist in the configuration space when the “U”-shaped
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Figure 7: Moving a Piano

Figure 8: Playing a game of virtual chess

object passes through the center of the world. In the
example shown, the RRT does not explore to much of
the surrounding space (some of this might be due to
the lucky placement of the corridor in the center of the
world). On average, about 1500 nodes are generated,

11

Figure 9: A narrow-corridor ezample.

and the problem is solved in two seconds on the PC
using naive collision checking.

Nonholonomic planning experiments Several
nonholonomic planning examples are shown in Fig-
ures 10 and 11. These examples were computed using
the RRTExtExt planner, and the average computation
times were less than five seconds on the PC using naive
collision detection. The four examples in Figure 10 in-
volve car-like robots that moves at constant speed un-
der different nonholonomic models. A 2D projection of
the RRTs is shown for each case, along with the com-
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Figure 10: Several car-like robots.

puted path from an initial state to a goal state. The top
two pictures show paths computed for a 3-DOF model,
using the standard kinematics for a car-like robot.

In the first example, the car is allowed to move in
both forward and reverse. In the second example, the
car can move forward only. In the first example in
the second row in Figure 10, the car is only allowed to
turn left in varying degrees! The planner is still able to
overcome this difficult constraint and bring the robot
to its goal. The final example uses a 4-DOF model,
which results in continuous curvature paths [43].

The final nonholonomic planning problem involves
the 4-DOF car pulling three trailers, resulting in a 7-
DOF system. The kinematics are given in [40]. The
goal is to pull the car with trailers out of one stall,
and back it into another. The RRTs shown correspond
to one of the best executions; in other iterations the
exploration was much slower due to metric problems.

Kinodynamic planning experiments Several kin-
odynamic planning experiments have been performed
for both non-rotating and rotating rigid objects in 2D
and 3D worlds with velocity and acceleration bounds
obeying L? norms. For the 2D case, controllability is-
sues were studied recently in [34]. All experiments uti-
lized a simple weighted L? metric on X, and were per-
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Figure 11: A 7-DOF nonholonomic planning example.

formed using variants of the RRT_BIDIRECTIONAL
planner. More experiments were presented in [30].
Recently, RRTs have been applied to automating the
flight of helicopters in complicated 3D simulations that
contain obstacles [15].

Consider the case of a fully-orientable satellite model
with limited translation. The satellite is assumed to
have momentum wheels that enable it to orient itself
along any axis, and a single pair of opposing thruster
controls that allow it to translate along the primary
axis of the cylinder. This model has a 12-dimensional
state space. The task of the satellite, modeled as a rigid
cylindrical object, is to perform a collision-free dock-
ing maneuver into the cargo bay of the space shuttle
model amidst a cloud of obstacles. Figure 12 shows
the candidate solution found after 23,800 states were
explored. The total computation time was 8.4 minutes
on the SGI.

The final result, given in Figure 13, shows a fictitious,
underactuated spacecraft that must maneuver through
two narrow gates and enter a hangar that has a small
entrance. There are five inputs, each of which applies a
thrust impulse. The possible motions are: 1) forward,
2) up, 3) down, 4) clockwise roll, 5) counterclockwise
roll. There are 4000 triangles in the model. Path plan-
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Figure 12: A 12-DOF kinodynamic planning example.

ning is performed directly in the 12-dimensional state
space. A typical run requires about 12 minutes on an
R12000.

Planning for closed kinematic chains Figure 14
shows a problem that involves a kinematic closure con-
straint that must be maintained in addition to per-
forming holonomic path planning. Many more exam-
ples and experiments are discussed in [49]. In the ini-
tial state, the closure constraint is satisfied. The incre-
mental simulator performs local motions that maintain
with closure constraint within a specified tolerance.

7 Discussion

We have presented a general framework for develop-
ing randomized path planning algorithms based on the
concept of Rapidly-exploring Random Trees (RRTs).
After extensive experimentation, we are satisfied with
the results obtained to date. There is, however, sig-
nificant room for improvement given the complexity of
problems that arise in many applications. To date, we
believe we have presented the first randomized path
planning techniques that are particularly designed for

13

Figure 13: An underactuated spacecraft that performs
complicated maneuvers. The state space has twelve dimen-
sions, and there are five inputs.
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£

Figure 14: Two manipulators transport a cross-shaped ob-

mm N m

ject while maintaining kinematic closure.

handling differential constraints (without necessarily
requiring steering ability). RRTs have also led to very
efficient planners for single-query holonomic path plan-
ning. Several issues and topics are mentioned below,
which are under current investigation.

Designing Metrics The primary drawback with the
RRT-based methods is the sensitivity of the perfor-
mance on the choice of the metric, p. All of the results
presented in Section 6 were obtained by assigning a
simple, weighted Euclidean metric for each model (the
same metric was used for different collections of obsta-
cles). Nevertheless, we observed that the computation
time varies dramatically for some problems as the met-
ric is varied. This behavior warrants careful investiga-
tion into the effects of metrics. This problem might
seem similar to the choice of a potential function for
the randomized potential field planer; however, since
RRTs eventually perform uniform exploration, the per-
formance degradation is generally not as severe as a
local minimum problem. Metrics that would fail mis-
erably as a potential function could still yield good
performance in an RRT-based planner.

In general, we can characterize the ideal choice of
a metric (technically this should be called a pseudo-
metric due to the violation of some metric properties).
Consider a cost or loss functional, L, defined as

T
L:/O Ua(t), u(t))dt + 1 (x(T)).

As examples, this could correspond to the distance
traveled, the energy consumed, or the time elapsed dur-
ing the execution of a trajectory. The optimal cost to
go from z to z’ can be expressed as

) T
p'(a,a') = min { | e ueyie+ lf(x<T>>} .
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Ideally, p* would make an ideal metric because it in-
dicates “closeness” as the ability to bring the state
from z to 2/ while incurring little cost. For holo-
nomic planning, nearby states in terms of a weighted
Euclidean metric are easy to reach, but for nonholo-
nomic problems, it can be difficult to design a good
metric. The ideal metric has appeared in similar con-
texts as the nonholonomic metric (see [27]), and the
cost-to-go function [5]. Of course, computing p* is as
difficult as solving the original planning problem! It is
generally useful, however, to consider p* because the
performance of RRT-based planners seems to gener-
ally degrade as p and p* diverge. An effort to make
a crude approximation to p*, even if obstacles are ne-
glected, will probably lead to great improvements in
performance. In [15], the cost-to-go function from a
hybrid optimal controller was used as the metric in an
RRT to generate efficient plans for a nonlinear model
of a helicopter.

Efficient Nearest-Neighbors One of the key bot-
tlenecks in construction of RRTs so far has been near-
est neighbor computations. To date, we have only
implemented the naive approach in which every ver-
tex is compared to the sample state. Fortunately,
the development of efficient nearest-neighbor for high-
dimensional problems has been a topic of active interest
in recent years (e.g., [2]). Techniques exist that can
compute nearest neighbors (or approximate nearest-
neighbors) in near-logarithmic time in the number of
vertices, as opposed to the naive method which takes
linear time. Implementation and experimentation with
nearest neighbor techniques is expected to dramatically
improve performance. Three additional concerns must
be addressed: 1) any data structure that is used for
efficient nearest neighbors must allow incremental in-
sertions to be made efficiently due to the incremen-
tal construction of an RRT, and 2) the method must
support whatever metric, p, is chosen, and 3) simple
adaptations must be made to account for the topology
of the state space (especially in the case of S* and P3,
which arise from rotations).

Collision Detection For collision detection in our
previous implementations, we have not yet exploited
the fact that RRTs are based on incremental motions.
Given that small changes usually occur between con-
figurations, a data structure can be used that dramat-
ically improves the performance of collision detection
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and distance computation [16, 31, 38, 42]. The incorpo-
ration of such approaches into our RRT-based planners
should cause dramatic performance benefits.
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