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Abstract— In this paper, we present an algorithm for manip-
ulability based trajectory generation for any serial manipulator
that has an inverse kinematic model that can obtain all solutions.
Our strategy is a search-based approach that analyzes candidate
configurations at discrete points along the workspace trajectory.
Given such a model we prove the configuration space trajectories
generated by our method are optimal within the limit of the
discretization of the workspace trajectory.

I. INTRODUCTION

Robot manipulators play an important role for a wide
range of industrial and domestic applications. Many of these
applications require interaction or contact with objects in the
world. In such cases, highly compliant motion is desirable
to react to the applied forces. One method for measuring the
compliance or the ability to react “gracefully” to applied forces
at a given configuration is manipulability [?]. This provides
a quantitative measure of manipulating ability, where higher
manipulability will lead to dextrous configurations staying
clear of singularities.

This type of necessity can be seen greatly in the realm
of humanoid robotics. To continue advancement for many
applications within humanoid robots it has become essential
that the robot be able to interact with the world, humans and
objects alike. An example of this interaction where compliance
is requisite can be seen in [?], where the robot performs
navigation planning by clearing objects from its path. This
type of problem motivates research to compute configuration-
space trajectories with high compliance or high manipulability
such that it can be in the best configuration possible along a
trajectory to apply force control. In this paper we present a
manipulability based global optimization algorithm for trajec-
tory generation.

Traditionally, trajectory optimization, takes an existing tra-
jectory obtained by some motion planning algorithm and op-
timizes it by the desired criteria. Our method differs from the
average trajectory optimization approach in that we generate
a configuration-space trajectory directly from a workspace
trajectory input. Based on a manipulability optimization cri-
teria our method reduces to a search problem of a mapping
between the configuration-space and workspace. In Section IV
we prove the global optimality of our methods criteria and that
the provided algorithm is resolution complete. Figure 1 shows
an image of a single configuration obtained an experiment run
on the HRP2-DH with its manipulator following a straight-
line trajectory at the boundary of the reachable workspace.

Fig. 1. HRP2-DH extending to the edge of its reachable workspace

Generated by the presented algorithm the robot is using its
chest yaw and pitch angle to increase the manipulability at its
end effector in a region of very low manipulability.

The importance of robot world interaction has been well
noted throughout the robotics community and a number of
trajectory optimizations currently work to enhance motions in
the configuration-space. Such methods will be discussed next
in Section II. The rest of the paper is organized as follows:
Section III defines any problem assumptions; Section IV
presents the algorithm for trajectory generation; Section V
describes experimental results, and finally Section VI gives
a summary and discussion.

II. RELATED WORK

Trajectory optimization and biasing has had a wide range
of application for enhancing task specific world-robot inter-
actions. In graphics there has been attempts to directly map
the configuration-space to the workspace by using a database
of realistic looking postures. In [?], [?], realistic postures
were stored into a discretized workspace, these postures are
adapted to positions along a workspace trajectory to generate
the desired 3D character posture trajectory biased to have
realistic looking postures.

Trajectory optimization methods in within robotics include
the “bang-bang” approach to time-optimality [?], [?]. Low



energy global optimization technique can be found in [?].
A Markovian Networks approach to industrial robot optimal
trajectory generation with respect to distance measures and
angular velocity and acceleration can found in [?].

More closely related to our approach, in the realm of com-
pliant trajectory generation, is the Operational Space Formu-
lation [?], [?]. The main idea here is to use a gradient descent
approach with null space optimizations of the Jacobian to do
prioritized posture control. Similarly, a prioritized method to
full body compliant motion can be found in [?].

Similar to the aformentioned methods we present a method
to enhance world-robot interaction. Many manipulator per-
formance measures have been proposed such as in [?], [?]
a dynamic measure for manipulator performance is consid-
ered. We focus on a manipulability based criteria that can
provide trajectories over all better for handling compliant
control at any point along the trajectory. Our approach dif-
fers from these trajectory optimization methods in that we
build a configuration-space trajectory from scratch working
completely in the workspace. We provide algorithm proper-
ties that yield optimaly generated trajectories which will be
demonstrated in further detail in the following sections.

III. PROBLEM FORMULATION

As previously mentioned, the algorithm is required to search
a sequence of candidate configurations at discrete points along
a workspace trajectory. For some workspace trajectory Tp =
{p0, ..., pn} where n defines the number of discrete points
along Tp and p ∈ R6 . We assume that for some manipulator
A there exists some inverse kinematic model K defined as:

{∀p ∈ Tp ∃ K(pi)|K(pi) = Qi}

where Qi = {qi0 , ..., qik
} is the set of all configurations at

point pi where 0 ≤ k ≤ ∞. Since at each point pi there exist
a candidate set of possible configurations Q we define the set
of all possible configurations along Tp as TQ where TQi

= Qi.
A valid configuration-space trajectory within TQ is a

continuous configuration set Tcont where each qi ∈ Tcont

has end effector at the corresponding position pi ∈ Tp.
Tcont is continuous if and only if for any configuration
pair {qi, qi+1} ∈ Tcont where 0 ≤ i < n has angular
configurations {θi, θi+1} where (θi − ε) < θi+1 < (θi + ε)
where ε defines the largest angular displacement by any joint
in A and θi = {θi0 , ..., θim

} where m denotes the degrees
of freedom (DOF) in A. Therefore, the set of all valid
configuration-space trajectories, V is the set of all existing
continuous trajectories within TQ.

Lemma 1. Topt ∈ V
Proof: Since V is defined as the set of all possible

continuous configuration sets, if Topt /∈ V then Topt is not
continuous and therefore is not a Valid trajectory.

Each Tcont has a related manipulability curve M(Tcont).
The goal is to maximize the global minimum of the ma-
nipulability curve. Thus, following Lemma 1, the optimal

manipulability based configuration-space trajectory reduces to
the form:

{ Topt = Tconta ∈ V |

M(Tconta).globalMin ≥ M(Tcontb
).globalMin

∀(b 6= a) }

IV. TRAJECTORY GENERATION

Given some input workspace trajectory, Tp, we build a
trajectory of all candidate configurations, TQ. Since TQ is
the set of all possible configurations it may have an infinite
number of elements, thus for this algorithm we consider a
finite set TQcalc

⊆ TQ. The algorithm reduces to a greedy
search of TQcalc

.
The first step is to obtain the discrete starting position pi

and starting configuration qstart defined as some qij ∈ TQcalci
.

Since the goal is to maximize the global minima of the
manipulability trajectory we choose the starting pi with the
TQi

that contains the configuration with the maximum possible
value for a global minima. This configuration qstart ∈ TQcalci

can be defined as:

(∀M(TQcalci
).globalMax).globalMin

That is taking the configuration with maximum manipulability
at each pi and starting at the configuration with minimum
manipulability contained within that set. To state more simply,
the algorithm begins with the best possible global min that can
exist for any trajectory derived from the existing TQcalc

.
Given a starting configuration we want to build Topt by

growing a Tcont from qstart as described in Section III.
By starting at configuration qstart we grow to configuration
set TQcalcn

and then from qstart → TQcalc0
. Therefore, the

starting configuration for the search process varies in an
attempt to maintain the best possible global minima.

Since we are applying a manipulability based optimization
we don’t only want to grow a Tcont but constrain the transition
from qij

→ qi+1j
. The goal is to maximize the minima

of the manipulability trajectory and therefore the continuous
qi+1j with highest manipulability value within the set TQi is
considered and is inserted to the current growing trajectory if
and only if M(qi+1j) ≥ M(qstart). Therefore, a qi+1j

cannot
be found with the presented criteria then a new qij

maintaining
the same criteria with qi−1j

. This search is iterated through
TQcalc

until a Tcont is created.
If the presented manipulability threshold criteria fails a new

qstart needs to be chosen. This configuration is chosen to be
the q ∈ TQcalc

where:

M(qstart)−M(q) ≤ M(qstart)−M(qij)

∀qij ∈ TQcalc
6= qstart

With this new qstart the algorithm iterates till it finds a Tcont

as before. This Tcont is defined as Topt,calc. It is important to
note that through the definitions of these sets, the generated
trajectory Topt,calc take on the following properties:



Trajectory TQcalc
size Num. Positions Branching Factor Calc. Time

Circular 59,561 50 ~4 1.5min
Line 33,902 20 ~6 20sec

TABLE I
PERFORMANCE RESULTS FOR CIRCULAR AND LINE TRAJECTORY.

Lemma 2. If only a single continuous configuration-space
trajectory exist it will be represented by Topt,calc

Proof:
If the magnitude of V = 1, the existing continuous tra-

jectory Tonly must have a configuration qmin ∈ TQ such
that M(qmin) = M(Tonly).globalMin. Since the algorithm
works to generate a Tcont starting with qstart being the
maximum possible global minima within TQ then M(qmin) ≤
M(qstart). By definition, all qi ∈ TQ where M(qi) ≤
M(qstart) are checked as a possible global minima before
failing to generate a trajectory. Therefore, for some ∃qi =
qmin ⇒ Tcont = Tonly .

Lemma 3. The trajectory found, Topt,calc with manipulabil-
ity trajectory M(Topt,calc) has the maximum global minimum
of all Tcont ∈ V

Proof:
If there exist some continuous configuration

set Tmissed such that M(Tmissed).globalMin >
M(Topt,calc).globalMin then qmin ∈ Tmissed where
M(qmin = M(Tmissed).globalMin must have value
M(qmin) > M(qstart since by definition ∀qi ∈ TQ where
M(qi) ≤ M(qstart) are checked. However, by definition
qstart has the maximum possible manipulability of all global
min therefore there does not exist any such qmin and thus
follows no Tmissed.

Theorem 1. For some input workspace trajectory Tp =
{p0, ..., pn} as n → ∞ and as Qcalc → Q, the calculated
optimal trajectory Topt,calc → Topt.

Proof:
As the number of input configurations TQcalc → TQ and

Tp = {p0, ..., pn} as n → ∞ the number of considered con-
figurations and valid trajectories become the actual complete
sets. Therefore, by Lemma 3 Topt,calc = Topt.

V. EXPERIMENTS

To test the quality of our method presented in Section IV,
we generated highly manipulable trajectories on the Digital
Human version of the Humanoid Robot Platform 2 (HRP2-
DH). For the following experiments we utilized 9 degrees
of freedom of the HRP2-DH incorporating the chest pitch
and yaw with the right arm, from the shoulder to the wrist
with the wrist being considered as the end-effector position.
Experemental specifics can be found in Table I which will be
further described in the following paragraphs.

One of many experiments that were run, was to have the
robot manipulator follow a circular trajectory oriented vertical

Fig. 2. Circular workspace trajectory followed by HRP2-DH.

Fig. 3. Manipulability plot along the generated circular trajectory.

in the workspace on a parallel plane in front of the robot.
This trajectory can be found in Figure 2. The hand orientation
was maintained at a 90 degrees horizontal relative to the waist
with a continuity delta defined at two degrees. The algorithm
defined in Section IV was used to generate a manipulability
optimized configuration-space trajectory. The optimized ma-
nipulability curve can be found in Figure 3. Images of four
configuration along the circular trajectory applied to the robot
can be seen in Figure 6. The top row of images are a frontal
view of the HRP2-DH while the bottom row gives the same
configurations from a side view better showing the use of

Fig. 4. Straight-line workspace trajectory followed by HRP2-DH.



Fig. 5. Manipulability plot along the generated straight-line trajectory.

Fig. 6. Front view (top) and side view (bottom) of the generated circular
workspace trajectory.

the chest pitch and yaw angles. These trajectories were also
developed in simulation, with corresponding images found in
Figure 7. The purpose of this experiment was to demonstrate
the robots use of the chest yaw and pitch to maintain the end-
effector in a high region of manipulability in front of the chest.
These can be better seen in the aerial view of the simulation
results Figure 8(bottom).

For this experiment 306, 306 configurations were considered
at each discrete position. Of all configurations considered
59, 561 valid sample configurations were entered into TQcalc

and taken into account for 50 discrete workspace positions
along a 20cm diameter circular path. At each of these discrete
points there existed anywhere from ~800 − 2000 configu-
rations. When generating the trajectory 9, 407 new starting
configurations were attempted and 36, 596 branches were
made (~4 branches per new starting configuration) before
realizing the optimal trajectory within the given data set with
the defined delta for continuous angular displacement. It took
~1.5min to generate this trajectory.

Fig. 7. Front view (top) and top view (bottom) of the simulation results for
the circular workspace trajectory.

Another experiment was done to demonstrate that this
trajectory generation method can obtain trajectories along
the bounding box of the manipulator reachable workspace.
This is a difficult region to obtain trajectories do to the
increasing regions containing singular solutions as well as
there being very few configurations when the manipulator is
fully extended. A straight line trajectory in the workspace is
shown in Figure 4. The corresponding manipulability curve is
shown in Figure 5. It is important to note the perturbations
in the manipulability curve. Taking notice of the scaling on
the graph, this is a magnified view to demonstrate that the
curve is not actually perfectly smooth which is purely do to
the sampling resolution. This also, has a direct correlation to
the the smoothness in the configuration-space trajectory. There
exist small vibrations due to the defined threshold for conti-
nuity. However, due to the fineness of our sampling resolution
the shown perturbations was unnoticed during experimentation
with an actual maximum manipulability delta of ~1/1000.

For this straight line trajectory experiment, the same number
of 306, 306 configurations were considered at each discrete
position. Of all configurations considered 33, 902 were vali-
dated and inserted to TQcalc

and considered when analyzing
configurations along the 20 discrete positions along the 20cm
in length straight line path. Generating the optimal trajectory
took just under 4sec with a branching factor of ~6.

VI. DISCUSSION

In Section III we consider only manipulators that have an
inverse kinematic model that can return all solutions such as
the arm of the HRP2-DH robot. However, since in actual
implementation only a finite set of configurations can be
considered there are more general methods that can calculate
a subset of configurations that would suffice for our TQcalc

to generate Topt,calc which is the optimal trajectory within
the calculated sampling resolution. One such method is pre-



Fig. 8. Front view (top) and top view (bottom) of the simulation results for
the linear workspace trajectory.

sented in [?] where a memory approach is taken to mapping
the configuration-space of any general manipulator to its
workspace. Another very general and more adaptive approach
is a learning based method that can be found in [?]. Utilizing
such methods would lead to manipulability optimization for
manipulators with partial known or even unknown inverse
kinematic models. However, it is important when utilizing
such methods to define a more strict guidlines for calculating
TQcalc

/subsetTQ since the algorithm is resolution complete.
Furthermore, another area that we are working to enhance

is our definition of continuity. Currently as presented in
Section IV we are only considering a strict angular delta
between adjacent configurations. However, we have been
working to improve this definition by incorporating secondary
optimization criteria such as minimum jerk optimizations [?]
to provide extremely smooth high manipulable trajectories as
direct output from the system. This methodology for enhancing
c-space continuity also opens possibilities for incorporating
other task specific secondary optimizations.

In Section V values are given for branching factor and
actual calculation time. It is important to note that there
exist a strong correlation between the two values. In addition,
calculation time and branching factor is greatly effected by
two main inputs: the defined threshold for continuity and
resolution of sampled data. Decreasing the sample threshold
will decrease the branching factor by making a more strict
branching condition, however, in our database setup this can
greatly increase the calculation time. This is do to each new
configuration is linearly searched in order by manipulability
values.

Secondly, increasing the sampling resolution will increase
the branching factor and potentially decrease the calculation
time. By having a more resolute sample set there will exist
a greater number of Tcont therefore increasing the number
of valid transitions that do not maintain the optimization
conditions. Although, the branching factor is increased with

a great number of valid transitions the number of new starting
configurations to be checked will be reduced therefore reduc-
ing the calculation time.

Given such a relationship, it is important to balance the the
defined threshold for continuity to the sampling resolution.
This is not only important for computation time, but using
threshold : resolution ratios towards either extreme (small
threshold : corse resoltion; large threshold : fine resolution)
will greatly alter the shape of the trajectory within the
configuration-space.

We have also taken notice to this relationship to be a
fundamental property with the data organization and linear
search method. We are currently looking into more specialized
search methods to make a directly proportional relationship
between branching factor and calculation time which would
lead to the development of an extremely efficient and on-line
manipulability based trajectory optimization system.
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