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Abstract

Impulse-based Dynamic Simulation of Rigid Body Systems
by

Brian Vincent Mirtich
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor John F. Canny, Chair

Dynamic simulation is a powerful application of today’s computers, with uses in fields rang-
ing from engineering to animation to virtual reality. This thesis introduces a new paradigm
for dynamic simulation, called impulse-based simulation. The paradigm is designed to meet
the twin goals of physical accuracy and computational efficiency. Obtaining physically ac-
curate results is often the whole reason for performing a simulation, however, in many
applications, computational efficiency is equally important. Impulse-based simulation is
designed to simulate moderately complex systems at interactive speeds. To achieve this
performance, certain restrictions are made on the systems to be simulated. The strongest
restriction is that they comprise only rigid bodies.

The hardest part of rigid body simulation is modeling the interactions that occur
between bodies in contact. The most commonly used approaches are penalty methods,
followed by analytic methods. Both of these approaches are constraint-based, meaning
that constraint forces at the contact points are continually computed and applied to deter-
mine the accelerations of the bodies. Impulse-based simulation is a departure from these
approaches, in that there are no explicit constraints to be maintained at contact points.
Rather, all contact interactions between bodies are affected through collisions; rolling, slid-
ing, resting, and colliding contact are all modeled in this way. The approach has several
advantages, including simplicity, robustness, parallelizability, and an ability to efficiently
simulate classes of systems that are difficult to simulate using constraint-based methods.
The accuracy of impulse-based simulation has been experimentally tested and is sufficient

for many applications.



The processing of collisions is a critical aspect of the impulse-based approach. Effi-
cient algorithms are needed for detecting the large number of collisions that occur, without
missing any. Furthermore, the physical accuracy of the simulator rests upon the accuracy of
the collision response algorithms. This thesis describes these essential algorithms, and their
underlying theory. It describes how the algorithms for simple rigid body simulation may be
extended to systems of articulated rigid bodies. To prove the method is truly practical, the
algorithms have been implemented in the prototype simulator, Impulse. Many experiments

performed with Impulse are described.

Professor John F. Canny
Dissertation Committee Chair
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Chapter 1

Introduction

The field of classical dynamics is one of the success stories of modern mathematics.
Dynamical systems exhibit a great deal of beautiful structure, and dynamicists have devel-
oped a body of knowledge that can predict the behavior of many of these systems to great
accuracy. The ability to know in advance how our universe or some part of it will evolve
is certainly one of the most powerful skills humans have learned. The modern computer,
with its power to perform computations at blinding speed and display realistic images, has
greatly increased our predictive power. But it has revealed holes in our knowledge as well:
places where our predictive power breaks down. Predicting with certainty the outcome of
a simple coin toss is at the limits of our current abilities, if not beyond them.

This thesis is about predicting the future, or more precisely, physical simulation.
It deals with very simple systems and very simple models. The systems are comprised of
rigid bodies; macroscopic deformations occurring in materials like cloth or rubber are not
allowed. Different rigid bodies may however be connected by joints to form articulated
bodies. Friction is modeled according to the Coulomb law; restitution is modeled using a
single coefficient. The latter provides a crude way of accounting for microscopic deformation
during a collision. Despite these simplifications, the predictive power is quite good for many
applications. One common but significant simplification is also dropped: the qualification
that one is only interested in the behavior of the system over some limited modeling interval.
Most textbook problems are concerned with the behavior of a system over an interval where
a single model applies: determine the velocity of the wrecking ball before it collides with the
wall; or, determine the acceleration of the hoop down the ramp, assuming slipping does not

occur. For the simulation problems addressed in this thesis, the analysis is not restricted



in this manner. The simulator must produce correct motion for whatever situation and
system the user describes, even in the presence of discontinuities produced by collisions, or
changes in contact state.

The external influences that affect the motion of physical objects can be divided
into two groups, based on whether or not they arise through physical contact. Forces due
to gravity, external electric fields, or air resistance are examples of non-contact forces.! The
motion of isolated rigid bodies, subject only to these non-contact forces, is well understood.
For example, an accurate analytic model exists for the motion of a rigid body in a uniform
gravitational field. The remaining influences on the motion of objects result from contact.
The contacts between different objects are where all of the interesting behavior arises,
and correct modeling of these contacts is critical to accurate physical simulation. Contact
modeling is also where all of the difficult problems are. The models for contact are less
accurate and more equivocal than those for the dynamics of isolated bodies. Much of the
research in dynamic simulation has been devoted to contact modeling.

In studying contact interactions, there is the typical tradeoff between accuracy and
efficiency. Finite element methods (FEMs), and related approaches, are among the most
accurate methods for studying contact interactions, but they require significant computation
time. They are not feasible, for example, in interactive simulation, where a user would like
to watch a system evolve at a speed near the true speed at which it evolves in the physical
world. This thesis is concerned with physically accurate simulation subject to the constraint
of interactive or even real time performance. The accuracy of the methods is less than the
accuracy of, for instance, finite element methods, but the goals are different. This thesis
demonstrates that dynamic simulations can be computed at interactive speeds, and retain
adequate physical realism and predictive power for real engineering applications. One of
the fundamental assumptions made for computational efficiency is that all bodies are rigid.

Impulse-based simulation is a departure from the typical approach for performing
interactive dynamic simulation. The greatest difference lies in how the contacts are modeled.
Rather than computing explicit constraint forces to be applied at contact points, contact
interactions are modeled exclusively through collision impulses applied between bodies. To
understand why this approach might be useful, it is necessary to understand the standard

constraint-based approaches, and their limitations.

! Air resistance might be modeled as a contact force resulting from collisions of a body with air particles.
But it is more common to model it as an aggregate non-contact force based on the body’s state.



1.1 Constraint-based contact models

Physically accurate, interactive simulation has received much attention in the fields
of engineering and computer science. The standard approach uses a constraint-based model
for contact, an outgrowth of the classical model for constrained dynamics. The latter is
useful in computing the forward dynamics of articulated bodies: given the current positions
and velocities of all parts of a physical system, find the current accelerations of all of the

parts. Counsider, for example, the planar double pendulum shown in Figure 1.1. Suppose

Figure 1.1: A disassembled double pendulum. Although the pendulum is an articulated rigid
body, its dynamics can be derived from the formulation for simple rigid bodies: first the
constraint forces £; are computed, and then the links are treated as individual rigid bodies.

x1 and x9 are points that are on different bodies of the pendulum, but which are attached

at a joint. However the two links move, the constraint

X1 — X9 = 0 (11)



must be enforced. This is done by introducing constraint forces that are transmitted through
joints, maintaining the constraints. Once the constraint forces are known, the links of the
system may be analyzed separately, and their motion determined from the Newton-Euler
equations of rigid body motion. Some methods do not explicitly solve for the constraint
forces, but produce the link accelerations directly. Usually the value of the constraint forces
is not important, as long as the constraints are enforced, so these methods are suitable, and
even preferable if computations can be reduced. General applications of the constraint-based

approach to dynamic simulation and modeling are in [BB88, CS89, Gle94, IC87, WGW90].

1.1.1 Non-penetration contact forces

Sometimes bodies are not permanently attached to each other, but come into con-
tact during the course of their motion. The row of dominos in Figure 1.2 is an example.

These contacts give rise to non-penetration constraints. Unlike (1.1), a non-penetration

P ——

Figure 1.2: For this system of dominos, there are no permanent constraints between bod-
ies, but the contacts (indicated by dots) give rise to temporary non-penetration constraints
between bodies.

constraint is fundamentally an inequality, rather than an equality, that involves the acceler-
ations of the bodies. In addition, there are restrictions on the constraint force: it can only
act in a direction which tends to push the objects apart, not pull them together. If a pulling
force is required to hold the objects in contact, the contact will merely break. For these
reasons, non-penetration constraints can not be handled using the classical approaches for
constrained dynamics.

There have been two main approaches to modeling non-penetration with con-
straints. The older and simpler approach is the family of penalty methods. These methods

do not strictly enforce non-penetration; instead, they keep penetrations small enough so



that they are not noticeable relative to the scale of the system. With this practical goal
in mind, it is not surprising that the easy-to-implement penalty methods have dominated
the computer animation field, where motion that “looks right” is often sufficient. Penalty
methods vary in details, however the rough idea is the same. A stiff spring is attached
at the contact, so that as two bodies move into one another, the spring attempts to push
them apart. The more penetration, the stronger the restoring force. If the bodies move
apart, the spring is destroyed. Penalty methods are used for rigid body simulation in
[RH91, MW88, MZ90], and are also commonly employed in deformable body simulation.

Penalty methods have a few problems. The very large spring constants that are
needed to keep the penetration sufficiently small generate large forces leading to stiff equa-
tions that are numerically intractable to integrate [WGW90]. Integration problems are
exacerbated by the fact that springs can be created and destroyed in a very transient
manner. Furthermore, choosing the spring constants is a black art. Constants that are
satisfactory for one situation may be too high or too low for another, and the problem
becomes worse when multiple bodies are in contact simultaneously. These spring constants
do not correspond to familiar physical properties that can be measured, like the coefficient
of friction. Another subtle problem of penalty methods arises because of the way collision
detection is typically performed. Usually collision checks are done at discrete times rather
than continuously over time intervals. As a result, contact is not detected until a finite
amount of penetration has occurred. Under penalty methods, this causes forces that are
larger than the true forces in the continuous system, causing instability.

Alternatives to the penalty methods are the analytic (or exact) methods for com-
puting non-penetration contact forces, first studied by Lotstedt [L6t81]. The idea is to cast

the non-penetration constraints as a linear complementarity problem (LCP):?

a=Af-b > 0
f >0 (1.2)
ffa = 0.

Here, a is a vector of the relative normal accelerations at the contact points, and f is a
vector of corresponding normal force components at these contacts. A and b are matrix

and vector constants which are determined from the known configuration of the system.

®For the cursory treatment given here, Baraff’s simpler notation is used [Bar94].



The constraint a > 0 prevents motion that would cause penetration at the contact points.
The constraint f > 0 means that contact forces can only try to push bodies apart, not hold
them together. The complementarity constraint f7a = 0 means that at each contact point,
either a force is acting and the relative acceleration is zero, or the bodies are separating,
and the force is zero. The former case means the contact will persist beyond the current
instant; the latter means the contact is ending. Litstedt gives an algorithm for solving the
LCP (1.2), based on the principal pivoting method of Cottle and Dantzig (see [CPS92] for
a detailed treatment of LCPs). Lotstedt’s algorithm in the context of rigid body simulation
is described in [L6t84]. Baraff has also used LCP approaches for simulation of rigid body
systems [Bar89, Bar92, Bar94].

When there is no friction in the system, the LCP (1.2) always has a solution for the
contact forces, and this solution is unique, subject to certain non-degeneracy constraints
[Bar92]. When friction is added to the model, the corresponding LCP may not have a
solution, and if a solution exists it may not be unique. Lotstedt [Lot81] gives existence and
uniqueness conditions, which Baraff [Bar92] generalizes. The most comprehensive results on
the existence and uniqueness of solutions for rigid body contact forces, using the Coulomb
friction model, are given by Pang and Trinkle [PT96] and Trinkle, et. al. [TPSL96]. Roughly
speaking, existence and uniqueness can be guaranteed if the coefficients of friction are small
enough. Certain problems, such as the static stability problem in which the bodies in the
system are at rest, always have solutions.

When there is no friction, the LCP is convex and solutions can be computed using
algorithms that run in worst case exponential time but expected polynomial time in the
number of contacts. Convexity breaks down with the addition of friction. Baraff proved that
the problem of determining the existence of a valid set of contact forces that obey Coulomb
friction laws at the contacts is NP-hard when there is sliding friction. To avoid this problem,
Baraff suggests a new model for consistency that includes non-colliding impulsive forces at
some of the contacts. Under this model, he gives an algorithm to find a valid solution to
the contact force problem. Its complexity is not known, although it appears to be practical
in many examples [Bar91, Bar92]. None of the algorithms proposed for computing contact
forces with friction are guaranteed to correctly terminate. Trinkle, ef. al. give quantitative
results using an approach based on Lemke’s algorithm (this is also Baraff’s approach), and
also a feasible interior point method [TPSL96]. In general, the reliability of the algorithms

decrease as the number of contact points increase.



Approximations are made to the Coulomb friction law in order to form an LCP
for the contact forces. Under sticking conditions, Coulomb friction imposes the nonlinear

restriction

£l < pllfnll,

where f; and f,, are the tangential and normal forces at the collision point. To cast this
into the LCP framework, a linear approximation to the friction cone is typically employed,
such as a friction pyramid. This has the effect of making friction anisotropic for three-
dimensional systems. Another common approximation is that upon the transition from
sticking to sliding, the frictional forces are only partially (instead of directly) opposed to
the tangential acceleration [Bar94, PT96].

Even without friction, analytic methods may not find the correct set of contact
forces, due to contact degeneracy. Consider the idealized system of a table resting on a
floor, where both objects are perfectly rigid, the table leg lengths are equal, and the floor
is flat (Figure 1.3). Here, there are multiple sets of contact forces satisfying the constraints
of the LCP: the forces are all positive, and prevent acceleration of the table into the floor.

Without friction, the acceleration of the system is provably unique even when the contact

(a) (b) (©)
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Figure 1.3: For o symmetric table of weight w, there are infinite contact force configurations
that satisfy the non-penetration LCP. Three are shown here.

forces are not [Bar92]; in all three cases of Figure 1.3, the net acceleration of the table
is 0. Analytic methods may not be reliable, however, for computing the contact forces.
Force configuration (c) of Figure 1.3 is the correct one; scales placed under each leg of the
table would all read the same weight. Analytic methods can compute different solutions,

such as those shown in parts (a) and (b) of the figure, because the contact configuration is



degenerate. On the other hand, penalty methods, and the impulse-based method described
in the next section, always compute configuration (c). The idealized case is an important one
to handle correctly; it is mathematically natural and the one often employed in simulations.
It is an accurate approximation of certain real situations, for instance, when the table
lengths are approximately equal, and the contacts are soft. This would be the case if the
table leg tips are deformable, as on a folding table, or if the table rests on carpet or linoleum.
If the table and floor are hardwood, and the leg lengths are different or the floor is warped,
then the idealized model is not accurate, as the true forces on the legs may vary greatly.
Such a system is not degenerate, and any of the simulation methods described will compute
the correct contact forces.

With friction, there may be multiple contact force solutions that do not lead to the
same accelerations. This indeterminacy that can arise in an analytic solution seems counter-
intuitive to a deterministic view of the world. The inconsistency is even more disturbing:

how can there be no *

‘valid” solutions to the contact force problem for a physical system?
Certainly, these forces always exist and are measurable for any physical system one can
construct. These anomalies of the contact LCP reflect the limitations of the rigid body
assumption and the Coulomb friction law, which are only approximations to reality.?

In dynamic simulation, exploiting coherence of the problem instances becomes
critical for analytic methods. Solving a linear program is more difficult than solving a
linear system of the same size, and solving LCPs is harder still. Solving a fresh linear
complementarity problem at every time step would be prohibitively slow. Much effort can
be saved by using the results from the previous time step. For example, in the pivoting
algorithms of Lotstedt and Baraff, basic solutions to the LCP can be used from the previous
time step, if they change relatively infrequently. Even more important, when friction is
present there may be multiple solutions to the LCP. In order to preserve continuity of
the accelerations of the bodies, the solution at the current time step must be computed
with knowledge of the solution at the previous time step [Bar92]. Practically speaking, this

dependence on contact coherence is perhaps the greatest limitation of the analytic methods.

3Tangentially related to this discussion is work of Peshkin and Sanderson [PS88], who have elegantly
characterized the motion of parts sliding on a flat surface in the presence of Coulomb friction. Assuming
nothing about the pressure distribution on the part, they compute an envelope of possible instantaneous
centers of rotation, thereby bounding the possible motions of the part. Unfortunately, their method is based
on a quasi-static assumption and the minimum power principle [PS89], which prevents application to many
dynamic systems.



1.2 The impulse-based approach

Consider the vibrational part feeder of Figure 1.4. This machine shakes parts into

Figure 1.4: A wvibrational part feeder that shakes parts into recesses to be picked up by a
manipulator. The system exhibits very transient contact modes.

recesses so that they can be picked up by a manipulator. Simulating this device requires
modeling the extremely transient contacts between the parts and the feeder. The contact
interactions are dominated by collisions. The configurations of non-colliding contact exist
only for short time intervals before changing. In short, the coherence between time steps
that the analytic methods need for efficiency is destroyed. This part feeder example was
one of the original examples that inspired the research described in this thesis. A method
was desired for efficiently simulating these types of systems. The result is impulse-based
simulation.

The fundamental idea of impulse-based simulation is that all contact between
bodies is modeled through collisions at contact points. Non-penetration constraints do

not exist; collisions are what enforce non-penetration between different bodies. Between
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collisions, the bodies move along ballistic trajectories, influenced only by gravity. As might
be expected, the method adeptly handles systems like the parts feeder described above,
where the bodies truly are unconstrained most of the time, and collisions are frequent. More
surprising is the fact that impulse-based simulation can be used to model cases of continuous
contact; it is a viable and powerful simulation paradigm for many applications. In the case
of a book resting on a table, the corners of the book experience rapid collisions with the
table, which prevent the bodies from penetrating. The rolling ball of Figure 1.5 rolls along
the ground and up the ramp, becomes airborne, then bounces along the ground, eventually
settling into a roll; sliding between the ball and terrain may also occur at various points
during this evolution. Under an impulse-based model, all of these modes and transitions are
handled by processing collisions. A macroscopic rolling constraint is never enforced. Rather,
the macroscopic behavior results from treating the underlying collisions with a physically

accurate model.
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Figure 1.5: Under impulse-based simulation, the various contact modes between the ball and
terrain, and the transitions between them, are affected through a physically accurate model
for collisions.

Hahn pioneered this simulation paradigm. This thesis expands upon his work, and
improves the methods for collision detection and collision response described in [Hah88].
The collision detection and response modules are critical components of an impulse-based
simulator, due to the central role collisions play in the simulation. These modules must be
very fast, due to the frequency of collisions, and also physically accurate, since collisions
are the sole means by which contact forces are transmitted.

The top level impulse-based simulation loop is extremely simple. It comprises

three steps:

1. Collision detection. Determine a maximum time interval over which the physical
system may be integrated, such that no collision between two bodies will be missed.

At the end of the interval, a pair of bodies called the critical pair must be checked for
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collision.

2. Dynamic evolution. Evolve the system forward in time by integrating the equations

of motion for each body. For rigid bodies, this trajectory is a simple ballistic one.

3. Collision response. Check to see if the critical pair of bodies has collided. If so,

compute and apply a pair of collision impulses to them.

These three steps are repeated throughout the course of the simulation. The
collision detection module works by maintaining an estimated time of impact for each pair
of nearby bodies. This is only an estimate, and it is refined as the bodies move closer, but it
is guaranteed to be conservative: the bodies can not collide any sooner than the computed
time of impact. The integration step is determined by the earliest time of impact between
any pair of bodies. The bodies that have the minimum time of impact become the critical
pair.

Once the integration interval is determined, all of the bodies in the system can
be evolved without regard to collisions, since none will occur during the interval. More
precisely, the surfaces of any bodies that collide during the interval will still be touching
(within some specified tolerance) at the end of the interval. The dynamic evolution step
is very simple because the bodies are treated as unconstrained,* and so their motion is
easy to compute. For example, isolated rigid bodies follow ballistic trajectories during the
integration step. The dynamic integration step is highly parallelizable since the bodies are
moving independently during the integration. In a computer with multiple processors, the
bodies can be parceled among the processors, and the entire system can be integrated with-
out any need for inter-processor communication. This can result in a substantial speedup
for physical systems with many objects. It is an advantage over constraint-based methods,
which need the state information of many bodies in order to compute the motion of each
one.

If the critical pair of bodies are touching after the integration step, and have ve-
locities that indicate a collision should occur at the contact point, the collision response
module computes a pair of equal and opposite collision impulses to apply at the contact

points. These impulses instantaneously change the velocities of the colliding bodies, send-

“This statement will be relaxed slightly in the context of hybrid simulation. But in both pure impulse-
based simulation and hybrid simulation, there is no interaction between bodies through non-penetration
constraints.
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ing them along new trajectories. For physical realism, the collision response module should
account for friction and energy loss during collision. Much of the work in rigid body sim-
ulation uses a simple model for collision resolution. The typical model assumes pre- and
post-collision velocities can be related with algebraic equations, without regard to the un-
derlying physical processes that occur during collision. Simple restitution laws that can
add energy to the system are typically used. For impulse-based simulation, the collision
response model is critical to the physical accuracy of the simulator, and better methods are
needed. Collisions are resolved by integrating the dynamic state according to differential
equations that hold during the colliding contact. These equations are derived directly from
the underlying frictional and restitutional laws; they are more accurate than the algebraic
approximations.

One might argue that impulse-based simulation is not a valid contact model. A rock
sitting on a table is not undergoing a series of collisions. It’s just not moving, period. This
is certainly true, although all approaches to simulation make approximations and deviate
from reality, especially those that achieve interactive simulation. The question is: what
information is desired from the model? Summing the collision impulses delivered from the
ground to the rock over some time interval, and dividing by the time interval, will yield the
same average force delivered to the rock as a constraint-based approach would. The average
velocity of the center of mass of the rock also vanishes, as in constraint-based methods.
Finally, the piecewise ballistic trajectory of the rock results in little displacement of the rock
from its average position. With a small enough collision tolerance, the displacement can be
made less than a pixel, so that the motion of the rock on a graphics display is imperceptible.
Although the impulse-based model deviates from reality, it preserves important physical
quantities related to forces and the motion of bodies.

Based on the literature, the impulse-based method has been more carefully tested
against reality than the constraint-based interactive simulation methods. Many comparisons
of impulse-based simulation to physical experiments or theoretical predictions are given
later in this thesis. More comparisons to physical experiments are certainly needed, for

both simulation paradigms.

1.3 Impulses versus constraints

There are several advantages of the impulse-based approach:
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e No contact coherence required. Analytic methods rely on contact coherence for
interactive speed, and even more importantly, for evolving the system in a physically
plausible way when multiple solutions exist to the contact LCP [Bar92]. Contact
coherence is not required for impulse-based simulation; extremely transient contact
modes cause no slowdown. This is especially useful in situations where objects settle

as they make a transition to a resting state.

e Computational robustness. As with the penalty methods, nothing can go wrong
in computing contact interactions. Given the dynamic states of the colliding bodies
and the material dependent parameters, a unique impulse to resolve the collision can
always be computed; the collision resolution algorithm always terminates with a valid
solution. The NP-hard problem of computing (non-colliding) contact forces is avoided,
as are the indeterminacy and inconsistency associated with analytic methods. The

stiff differential equations of penalty methods are also avoided.

e Colliding contact naturally handled. With constraint-based methods, collisions
must be handled separately, before any contact force analysis begins. But under
impulse-based simulation, colliding contact is naturally handled, since collisions are

used to model all contact.

e Non-penetration strictly enforced. Like analytic approaches but unlike penalty
methods, impulse-based simulation strictly enforces non-penetration. In addition, if
a heavy object and a light object are sitting on a table, both will experience collisions
with the table at roughly the same frequency; the heavy object does not require more

impulses.

e Decoupling of bodies. Unlike constraint-based approaches, bodies are evolved inde-
pendently during dynamic integration under impulse-based simulation. This natural
decoupling facilitates parallelization. Collisions are also processed using a completely
local model, so the global state of a system of contacting bodies is not needed to
compute the impulses. A description of preliminary work in parallel impulse-based

simulation is in [Pau95].

e Simple design. The impulse-based paradigm is conceptually simpler than analytic

methods, making it easy to code. Advanced numerical methods are not required. All
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macroscopic contact modes (rolling, sliding, resting, and colliding) are handled with

a single, local collision response algorithm.

e Physically valid contact forces. Like penalty methods, the impulse-based method
is not subject to the contact degeneracies that analytic methods are. In the example of
Figure 1.3, the physically valid contact forces will be computed. (Forces are computed

by time averaging impulses over a short interval.)

e Extension to constrained bodies. The methods of pure impulse-based simulation

are easily extended to handle systems of rigid bodies linked together by joints.

Though not an inherent property of impulse-based simulation, the collision re-
sponse model presented in this thesis is a more accurate model than those typically em-
ployed in interactive simulation. It would be useful in other simulation paradigms as well.
There are also disadvantages to the impulse-based method as compared to constraint-based

methods. In particular:

e Poor handling of stable and simultaneous contact. Impulse-based methods are
less efficient than constraint-based methods for certain types of prolonged, stable or
simultaneous contact; in some cases the impulse-based methods are not even feasible.

The canonical example is a stack of blocks at rest.

e Static friction creep. Artifacts of the impulse-based approach appear when mod-
eling static friction in certain cases. A block will creep down a ramp, even if static

friction should hold it in place.

These limitations are significant, and this thesis does not claim that the impulse-based
approach is a replacement for constraint-based approaches. There are cases where impulse-
based simulation is the most natural approach for modeling non-penetration, and where
it leads to faster simulation speeds (based on reported data). The same can be said of
constraint-based methods. In the literature, it is evident that constraint-based approaches
have been applied to problems they are well suited to, and the same is true of impulse-based
approaches. Any contest between the two methods would be decided before it began by
the choice of physical system to simulate. Furthermore, such a contest would be pointless,
since the methods are complementary more than they are competing: the situations for

which one approach works poorly are exactly those for which the other approach works
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well. Previous work has demonstrated what can be done with constraint-based techniques;
less has appeared on what can not be done easily. One purpose of this thesis is to describe
what can and can not be done with impulse-based techniques.

Much of this thesis deals with theoretical issues surrounding impulse-based simu-
lation, however, there is a practical component as well. The ideas discussed in the thesis
have been implemented in Impulse, a prototype impulse-based dynamic simulator. Impulse
served as a proof by example during the research phase of this thesis; only through imple-
mentation could the techniques be proven practical. While many of the discussions refer to

this specific implementation, they apply to any impulse-based simulator.

1.4 Overview of the thesis

The remainder of the thesis is organized as follows.

Chapter 2 describes collision detection in the context of impulse-based simulation,
using the broad phase and narrow phase detection systems in Impulse as examples. In
particular, the chapter discusses how collision checking may be performed conservatively,
so that collisions are guaranteed to be detected.

Chapter 3 describes the collision response model used in Impulse. A physically
accurate response model is critical to accurate impulse-based simulation. The model incor-
porates friction and restitution, and analyzes the dynamics that occur during a collision.

Chapter 4 derives Featherstone’s algorithm for the forward dynamics of con-
strained bodies from the first principles of Newtonian physics. This is a key ingredient
for the simulation of constrained bodies, and also serves as the basis for constrained body
collision response.

Chapter 5 describes hybrid simulation, a method of applying impulse-based sim-
ulation to systems of constrained rigid bodies. It discusses necessary modifications to the
collision detection and collision response algorithms described earlier, as well as a framework
for supporting control and behavior systems.

Chapter 6 is self-contained, and presents algorithms for computing the center of
mass and moments of inertia for arbitrary uniform-density polyhedral bodies. The algo-
rithms are very fast and naturally minimize numerical errors; they are useful for any rigid

body simulator.
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Chapter 7 discusses many examples of simulations and experiments performed
with Impulse, illustrating the strengths and weaknesses of the impulse-based approach.
Accuracy is analyzed qualitatively and quantitatively, execution times are provided, and
several real applications from the part-feeding domain are discussed.

Chapter 8 concludes the thesis and discusses future work.

Appendix A provides a variety of basic information relevant to dynamic simula-
tion, including the Newton-Euler equations for rigid body motion, and how orientation is

parameterized and evolved using a quaternion representation.
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Chapter 2

Collision Detection

A fundamental problem in the simulation of physical systems is the collision detec-
tion problem: determining when and where two bodies come into contact. This problem has
its roots in computational geometry and robotics. Typically, in the former setting, a group
of static objects are tested for intersection, while in the latter setting, the time of contact
must be reported between bodies following trajectories that are closed form functions of
time. In simulation, the physical system is certainly not static, and the paths of the objects
are described with differential equations instead of closed form trajectories. The speed re-
quirements that interactive simulation demands are also formidable. Hahn found collision
detection to be the bottleneck in simulation of physical systems [Hah88]; in his experiments,
collision detection often accounted for over 95% of the computation time. Collision detec-
tion algorithms have improved since then, however, they remain the bottleneck in many
situations.

This chapter describes how collision detection may be performed in an impulse-
based simulator, using the system in Impulse as an example. The main contribution is an
algorithm than can efficiently detect a large number of collisions, and that is guaranteed not
to miss any collisions. To meet this guarantee, lower bounds on the time of impact of two
ballistic rigid bodies are derived from the principles of dynamics. Methods of generalizing
this approach to other types of motion are described. This chapter also develops a fast
bounding box technique for culling most of the collision checks in a simulation with many
bodies. Two variants of the algorithm are described and compared, and the algorithm is

also compared to other bounding box techniques.
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2.1 Introduction and related work

Hubbard gives a comprehensive reference list of work in collision detection [Hub94].
Early approaches to collision detection for simulation solved problem instances from scratch
at every time step. An example is the polyhedral collision detection algorithm of Moore
and Wilhelms that is O(n?), where n is the number of features on both polyhedra [MW8S].
Hahn’s method tests every edge of one polyhedron against every face of the other when
bounding boxes can not guarantee the absence of collision, and therefore also has quadratic
complexity [Hah88]. These types of algorithms are too slow for many simulation applica-
tions. Using bounding boxes or spheres helps, but is not enough. Gilbert, et. al. proposed a
O(n) algorithm for determining the distance between convex polyhedra, which also provides
a measure of penetration when polyhedra overlap [GJK88]. The biggest improvement over
these early algorithms came from the realization that coherence could be used to greatly
reduce the computations. In simulation, the collision detection system solves a series of re-
lated problems, each one only slightly different than the one before. For convex polyhedra,
coherence is combined with locality: using local properties to verify separation between
bodies, or lack thereof. Gilbert, ef. al. describe an adaptation of their algorithm to take
advantage of coherence when it exists, however the reported speedups are fairly modest
[GJK88]. Coherence is used more effectively in Baraff’s witness plane algorithm [Bar92],
and is thoroughly exploited in the Lin-Canny closest features algorithm [LC91, Lin93].

For simulation, the collision detection algorithm is only called at discrete sample
points. Even if invocation occurs more than once per frame, it is still possible to miss
collisions. One pathological example is a bullet speeding toward a thin wall; No matter
what the minimum sampling period of the collision detection system (the minimum temporal
resolution [Hub96]), one can choose a bullet speed and wall thickness such that the bullet
passes completely through the wall between collision checks. One correct solution is to
apply detection algorithms to the four-dimensional hyper-polyhedra swept out in space-time
[Can84]. These methods are too slow and have not been used in any dynamic simulators
described in the literature. Most simulators systems handle the problem of missing collisions
by ignoring it [CS89, MW88, Hah88, Bar90].

Ignoring the problem is not a good solution, especially in an impulse-based paradigm,
where collisions are used to model contact forces. Von Herzen, et. al. [HBZ90] present an

algorithm that uses Lipschitz bounds to derive limits on how far parts of a parametric sur-
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faces can move over a time interval; their system is guaranteed to catch all collisions. The
bounds must be supplied by the user when the surface is defined. The algorithm of Snyder,
et. al. uses an interval version of Newton’s method for root finding to achieve the same
goal: guaranteeing that the very next collision will be detected [SWF193]. Here, Lipschitz
bounds are not needed since the exact trajectories of the surfaces over time are input data
for the problem. These approaches are similar to the one used in Impulse and discussed in
this chapter. Lower bounds on the times of impact between bodies are maintained and used
to ensure collisions are not missed. The user is not required to provide Lipschitz bounds
nor the exact trajectories of the bodies over time. Physical laws, such as the conservation
of momentum, provide enough information to bound the times of impact. Like the systems
described in [HBZ90, SWF*93], Impulse uses a heap structure to schedule collision checks

between bodies.

2.1.1 Collision detection in Impulse

For computational speed, Impulse restricts bodies in the simulation to be rigid
and polyhedral. Rigidity allows much computation to be performed ahead of time, only
once. The polyhedral restriction is is fairly mild one since any more general shape, such
as a parametric surface or CSG-style solid, can be approximated to arbitrary closeness
with a polyhedral model. Of course the complexity of the polyhedral model may grow very
large, but the algorithms used by Impulse are quite insensitive to this complexity. Impulse’s
collision detection system is ezact, meaning that the underlying polyhedral models of the
objects are eventually used if the objects are close enough. These methods are in contrast to
approzimate methods, which are less concerned with locating the exact collision point and
more concerned with performance. Hubbard’s method based on bounding sphere hierarchies
is one approximate method which is able to perform collision checking between very complex
bodies at frame rates [Hub96]; Hubbard makes a good case for using approximate methods
in many time-critical applications. Such approximate methods were not used in Impulse,
which was designed to have value as a simulation tool. Inaccuracies in the position of
contact points can have large repercussions in the course of the simulation.

Efficient collision detection systems employ some type of multi-level strategy.
Bounding boxes, bounding spheres, octrees, or similar methods are used to prune most

of the potential collision checks between a group of bodies. A more sophisticated but ex-
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peunsive collision detection algorithm is applied to pairs of bodies that can not be dismissed
by the simple technique. This chapter uses Hubbard’s terminology, referring to these two
levels of checking as the broad phase and the narrow phase. For a simulation with n bodies,
the broad phase prunes most of the O(n?) pairs, and the narrow phase is applied to the
pairs that remain.

In the broad phase, Impulse computes bounding boxes for the swept volumes
of bodies over a time interval, and finds intersections of these boxes using a hierarchical
hash table. The swept volume technique is different than a four-dimensional space-time
intersection test in two respects. First, the bounding boxes are only conservative estimates
of the swept volumes of the bodies, with much simpler geometry than the true swept
volumes. Second, since the boxes are not being used to compute the time of collision, but
only to signal that one might have occurred during some time interval, one can project the
true swept volume in space-time along the time axis, into the physical space. The analysis
is simplified by working in three-dimensional physical space rather than in four-dimensional
space-time. The hashing technique employed for detecting bounding box overlaps is based
on a strategy Overmars proposes for solving the static point location problem [Ove92].

Impulse’s narrow phase collision detection is based on the Lin-Canny algorithm.
It is one of the fastest algorithms known for tracking the closest features between convex
polyhedra, in a setting where coherence can be exploited. The algorithm’s output can
easily be used to compute the distance between the polyhedra, which serves as a basis for
collision detection. The very code which implements the Lin-Canny algorithm in Impulse
was subsequently used for the low-level core of the I-COLLIDE collision detection package
for large-scale environments [CLMP95].

Both the broad and narrow phases of Impulse’s collision detection system rely
heavily on dynamics as well. Dynamics are used to compute bounding boxes that enclose
bodies’ swept volumes during the broad phase. Dynamics are used to determine when the
next collision check should be performed between a pair of objects during the narrow phase,
in a way that guarantees collisions will not be missed. This coupling between collision de-
tection and dynamics is unfortunate from a modularity standpoint. Collision detection can
not be isolated as a strict geometric problem; the detection system must have information
about the dynamics of the simulated bodies. The coupling, however, allows for a very
efficient collision detection system, tailored to the needs of dynamic simulation.

A block diagram of Impulse’s entire collision detection system is shown in Fig-
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ure 2.1. The Lin-Canny algorithm is used to compute geometric information about the
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Figure 2.1: A block diagram of Impulse’s collision detection system. Arrows represent
data flows. Numbers designate indices of bodies in the simulation. The Lin-Canny algo-
rithm, TOI estimator, and active collision heap perform narrow phase collision detection;
the bounding box computer, hierarchical hash table, and close counters are used for the broad
phase.

separation of a pair bodies; it is described in detail in Section 2.2. This geometric informa-
tion, plus the dynamic state of the bodies is used to estimate a time of impact (TOI) for the
pair. Pending collision checks between pairs of bodies are maintained in the collision heap,
sorted by the pair’s TOI. Time of impact estimation and the collision heap are discussed in
Section 2.3. The bounding box computer, hierarchical hash table, and close counters form
the broad phase collision detection system. They typically prune most of the pairs of bod-
ies from the active collision heap using inexpensive tests. These components are described
in Section 2.4. The section also presents a comparison between the spatial hashing tech-
nique used in Impulse’s broad phase, and a common technique based on coordinate sorting.

Throughout most of the chapter, the focus is on collision detection between ballistic bodies,
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which are ubiquitous in impulse-based simulation. Section 2.5 describes how the algorithms

may be extended to more general types of motion.

2.2 The Lin-Canny algorithm

The heart of Impulse’s collision detection scheme is the Lin-Canny closest features
algorithm [Lin93, LCY1], an extremely fast method for tracking the features (faces, edges, or
vertices) between a pair of convex polyhedra moving through space. The principle behind
the algorithm is best described with a two-dimensional example. A fundamental concept
in the Lin-Canny algorithm is that of a Voronoi region. Consider the polygon shown in

Figure 2.2. The polygon has eight features: four vertices and four edges. For each

\

Figure 2.2: A polygon and its Voronoi regions.

feature F', the set of points closer to F' than to any other feature of the polygon is called
the Voronoi region of F, and denoted V(F'). The shapes of the Voronoi regions are easily

deduced for polygonal bodies. From each vertex, extend two rays outward from the polygon,
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each perpendicular to one of the edges incident to the vertex. These rays form boundaries
between the Voronoi regions. The Voronoi region of a vertex is the infinite cone lying
between the two rays emanating from that vertex. The Voronoi region of an edge is the
semi-infinite rectangle lying between two parallel rays passing through the edge’s endpoints.

Collectively, the Voronoi regions partition the space outside the polygon.

Theorem 1 Given non-intersecting polygons A and B, let a and b be the closest points
between feature F, of A, and feature Fy, of B, respectively. If a and b are the closest points
between A and B, then a € V(F,) and b € V(F,).!

Proof: Suppose a ¢ V(Fp). Then a is in some other Voronoi region, say V(F.), and a is
closer to F. than to any other feature on B. Since b € Fj, b ¢ F,, and so a and b can not

be closest points. A similar results holds if b ¢ V(F,). O

The fundamental basis of the Lin-Canny algorithm is the converse of Theorem 2,

which is true for convex objects (see [Lin93] for the proof).

Theorem 2 Given non-intersecting convex polygons A and B, let a and b be the closest
points between feature F, of A, and feature F, of B, respectively. If a € V(F,) and b €
V(F,), then a and b are the closest points between A and B.

Theorem 2 suggests an algorithm for finding the closest points between convex polygouns.

Consider the situation on the left of Figure 2.3. Here, closest point candidates a and b

polygon A

polygon B
polygon B

polygon A

Figure 2.3: Left: Theorem 2 implies a and b are the closest points between A and B. Right:
a € V(F,), and so a and b are no longer closest points. The closest feature on B will be
updated from vertex v to edge e.

!For simplicity, degenerate cases where the points are on the boundary of Voronoi regions are ignored
here. [Lin93] for more details.
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each lie in the Voronoi region of the other’s containing feature. By Theorem 2, they are the
closest points. In the situation depicted on the right, b is still in the Voronoi region of Fy,
however, a is no longer in the Voronoi region of Fp. Specifically, a lies on the wrong side of
ray y. In this case, the Lin-Canny algorithm specifies that feature Fj, should be updated to
the feature on the other side of ray y, namely the edge e. At this point, the closest points
between the new features are computed, and the Voronoi check is made again. This process
can continue for many iterations, however it is guaranteed to eventually terminate with
a € Fy, b e F,, and a and b the closest points between A and B. The three-dimensional
version of the algorithm is a natural extension of the two-dimensional case. The bodies in
question are polyhedra, the features are vertices, edges, and faces, the Voronoi regions are

infinite regions of space bounded by constraint planes rather than rays (Figure 2.4). The

F/
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|

‘ -
} voronoi plane
|

|

|

|

|

|

|

|

|

|

|

old closest feature

closest point

new closgst feature

Figure 2.4: Tracking closest features of polyhedra with the Lin-Canny algorithm.

basic algorithm remains the same. For details, see [Lin93, LC91].
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Although designed to track the closest features, the Lin-Canny algorithm is easily
extended to a collision detection algorithm. The distance between two polyhedra is com-
putable from simple geometric formulas, given the closest features. The closest points are
obtained as a by-product of these calculations. With finite precision arithmetic, a collision
epsilon €, must be used. The collision detection system reports a possible collision when the
inter-polyhedral distance falls below e.. The particular value of €. is not critical; a value is
chosen based on how large a gap is tolerable. For animation purposes, the collision epsilon
should be smaller than a pixel width, so that the objects appear to touch when colliding.
For the simulation examples described later in the thesis, €. was two to three orders of mag-
nitude smaller than the dimensions of the objects. For example, in the bowling simulation,

which used a standard 60 foot alley and 15 inch pins, €, was one millimeter.

2.2.1 Collision detection and coherence

For efficient collision detection for simulation, it is extremely important to take
advantage of geometric coherence (also called temporal or frame-to-frame coherence). The
problem instances presented to the collision detection algorithm are a series of closely related
problems. In Lin-Canny terms, the closest features between a given pair of objects usually
change relatively infrequently. Even if the features are changing upon every invocation
of the algorithm, due to highly discretized polyhedral models or high velocities, the pair
of closest features from the last invocation of the algorithm is a good starting point for
the search for the current pair of closest features. In Impulse, a two-dimensional table of
closest feature pairs is maintained. For every pair of bodies in the simulation, there is a
corresponding table entry containing the closest feature pair for these bodies, computed
from the last invocation of the algorithm. Figure 2.5 illustrates the effect of coherence on
tracking the closest features.

The Lin-Canny algorithm has been described as taking “expected constant” time to
report a pair of closest features. This claim stems from coherence; often the closest features
do not change between successive calls, and the algorithm verifies this fact in constant
time. This is a bit misleading. Consider tracking closest features between a small satellite
orbiting the Earth, over its equator. If the Earth is modeled as a tessellated sphere with NV
facets, then during one orbit of the satellite, tracking on the Earth must progress through

O(VN) features. As the resolution of the Earth model increases, more work is clearly
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Running Time of Lin—Canny Algorithm
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Figure 2.5: This graph shows the effect of coherence on the performance of the Lin-Canny
algorithm. The algorithm was used to track the closest features between o fized cube and a
polyhedral model of a sphere as the sphere rotated on an axis parallel to the nearest surface
of the cube. The amount of sphere rotation between successive calls to the algorithm was
varied from one to 20 degrees, in one degree steps. This experiment was performed for three
different discretization resolutions for the sphere, as indicated above. The performance of
the algorithm decreases as the rotation speed increases, due to a decrease in coherence.
Also note the insensitivity of the algorithm to polyhedron complexity, when coherence can be
exploited. At a rotational speed of one degree between calls, a 16-fold increase in complexity
results in a 15% increase in execution time.

being done to track the closest feature as it circumnavigates the planet, even if the satellite
speed remains constant. In this case, the Lin-Canny algorithm is O(v/N). Figure 2.5 and
Graph 2 in Cohen, et. al. [CLMP95] also illustrate that the running time of the Lin-Canny
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algorithm depends on the number of features. One difficulty of assigning a complexity to
the algorithm is that it is very dependent on how the objects are moving. If the satellite
mentioned above falls straight down toward Earth, the algorithm is again constant time.
The claim of “expected constant” time raises more questions than it answers, however, and
almost constant time is a better description. In the satellite example, the coefficient on v N
is probably extremely small compared to the constant term. In experiments with Impulse,
there is negligible slowdown in simulation speed, when polyhedral models of spheres with
a few hundred facets are replaced with polyhedral models with over 20,000 facets (over
60,000 features). The latter models are used in many of the simulations described later in

the thesis.

2.2.2 Extensions to the Lin-Canny algorithm

The extension of the basic Lin-Canny algorithm to curved objects has been studied
by Lin and Manocha [LM93]. Curved bodies are approximated with a polyhedral mesh,
and closest points are tracked between these meshes. The closest points on the meshes are
projected onto the actual curved surfaces, and a numerical root finding method uses these
points as a starting point to locate the true closest points. A general form of this algorithm
has not been implemented.

Another extension, used in Impulse, is the extension to non-convex bodies. As-
suming non-convex bodies can be decomposed into a group of convex pieces, Lin-Canny can
still be used to compute the distance between a pair of bodies. If body A is decomposed into
m convex pieces, Aq,..., A, and body B is decomposed into n convex pieces, By, ..., By,

then the distance between A and B can be computed as

d(A,B) = min d(4;, By) (2.1)

1<i<m

1<j<n
In other words, the distance computation is broken into m x n standard Lin-Canny compu-
tations between convex bodies. Because of this reduction of the non-convex case to a group

of convex cases, the rest of this chapter assumes convex bodies.

Significant improvement over this naive scheme is possible by computing the convex
hulls of each of the non-convex bodies, and computing the distance between bodies as the

distances between their hulls. This requires only one Lin-Canny invocation, and since A is
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enclosed by its convex hull, the distance to the convex hull is a lower bound (a conservative
estimate) on the true distance to A. Only if the distance between the hulls reaches zero,
must the bodies be unwrapped and treated as a collections of convex pieces. For complex
bodies, this scheme can be applied recursively to obtain an entire tree structure for a non-
convex body A. The inner nodes of the tree are convex hulls of various subsets of the entire
body, and if a particular convex hull is pierced, that tree node is replaced by its children.
The leaves of the tree represent the underlying convex decomposition of the entire body,
and the root of the tree is the convex hull of the entire body. With such a structure, only
as much of the body is unwrapped as needs to be to determine distance; the rest of the
concavities remained wrapped in convex hulls. Details of this scheme may be found in
Ponamgi, et. al. [PML95]. At present, a general version of this algorithm does not exist,
although one is being developed as part of I-COLLIDE [CLMP95]. In Impulse, the naive

approach represented by Equation (2.1) is used to handle non-convex bodies.

2.3 Prioritizing collision checks

For simulation, the collision detection algorithm must determine the time . at
which a collision occurs between bodies. The typical approach is akin to the approach taken
in numerical root finding. Assume there exists a function that takes two bodies and returns
a boolean value indicating if they are penetrating or not. If the bodies are not penetrating
at time £y, dynamic integration of the system state continues to some time ¢;. If at this
point, the bodies are re-tested and penetration is detected, than a collision has occurred
between them at some time ¢, with ¢y < ¢t. < ¢;. In this case, a new point t,, € (to,t1)
is chosen, and dynamic integration is performed from %y to ¢,,. Based on the result of a
collision test at the time ¢,,, the process is repeated recursively on the interval (¢, t,,), or
(tm,t1). The process is repeated until the width of the interval falls below some tolerance.
The time t,,, may be chosen as the midpoint of the interval (¢¢, 1), however Baraff reports
much faster convergence using an interpolation method instead of simple interval bisection
[Bar89]. If the penetration function returns a distance of separation or penetration, rather
than a simple boolean value, one can more accurately estimate the moment of collision by
examining this distance at ¢y and ;. The distance of separation is well defined for convex
bodies; distance of penetration can be defined as in [SSCK94].

A particular trait of the Lin-Canny closest features algorithm (as originally speci-
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fied) had a strong impact on the way collision detection is performed in Impulse. When the
algorithm is passed two polyhedra that are penetrating, it cycles between pairs of closest
features, never terminating. The proofs which guarantee convergence and termination rest
on the assumption that the bodies are non-penetrating. Lin motivates the solution to this
problem, based on constructing internal pseudo- Vorono: regions that partition the space in-
side of the polyhedron, and matching each interior region with a feature on the polyhedron
[Lin93]. This extension to the original algorithm is nontrivial, and it was not pursued at
the time the collision detection subsystem of Impulse was developed.

Instead, the collision detection subsystem in Impulse was designed to detect col-
lision before it occurred. This is done by obtaining successively closer approximations to
the exact collision time ?., without ever integrating beyond .. The situation is as depicted
in Figure 2.6, in which the function d(t) represents the distance between two bodies; nega-

tive values and zero crossings correspond to penetration and collisions, respectively. The

o

Figure 2.6: A one-sided approach to root finding is used to find collision times in Impulse.
The function d(t) is the separation distance between two bodies over time; the zero at t.
indicates a collision. The velocities of the two bodies at time t; are used to compute a
parabola that is less than d(t) for t > t;. The next zero crossing of the parabola gives tii1,
a closer approrimation to t. that is guaranteed not to exceed t..

derivative of d(t) is a measure of the velocity of approach of the bodies. In Impulse, a series

of approximations ¢, to, ..., t, is made to the actual collision time t., such that no ; exceeds
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t.. At each t;, the current velocities of the relevant bodies are used to compute a second
order function which is a lower bound on the separation distance between the bodies, for
t > t;. The abscissa of the next zero crossing of the corresponding parabola becomes ¢;1.
The series of closer approximations to #. ends when the distance between the bodies falls
below e.. Using a Newton-Rhapson approach to root finding, it is possible to miss a zero
crossing in d(t); for example, the crossing at ¢/, in Figure 2.6 is likely to be missed. This
root can also be missed if there is a minimum time interval between collision checks. With

the one-sided approach, every root of 6(¢) is found.

2.3.1 The collision heap

When collision checking reveals that the distance between two bodies exceeds the
collision epsilon ., a lower bound on their time of impact (TOI) is automatically computed
and returned. In terms of Figure 2.6, the current time is ¢;, and the value returned is ;1.
Assume a TOI estimator exists, which takes as inputs the dynamic states of two bodies,
along with the closest points between them. It returns a lower bound on the time of impact,
based on the assumption that the bodies will follow ballistic trajectories until the moment
of impact. The returned TOI estimates can be used to adaptively control the frequency of
collision checks while integrating the dynamic system.

Collision checks are scheduled in a collision heap. Corresponding to each pair of
bodies in the simulation is an element in the heap, containing a field with the last computed
TOI for that pair. The TOI field is a lower bound on the true time of impact for the bodies,
which is unknown. The heap is sorted on this TOI field, so that no collisions can occur
before the time in the TOI field of the top heap element (Figure 2.7).  The top level
simulation loop is very simple. The system is evolved to the time in the TOI field of the top
heap element, at which point collision checking is performed for this top top pair of bodies.
If the distance between the bodies is below the collision epsilon, a collision is declared, and
is handled by the collision resolution system. In any case, the TOI for the body pair is
recomputed, possibly causing it to drop down in the heap, and the process is repeated.
This scheme adapts the frequency of collision checks appropriately: when a pair of bodies
are far apart or moving slowly, collision checks between them will be infrequent; as the

bodies approach, checks increase as necessary.
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Figure 2.7: Impulse’s narrow phase collision detection system prioritizes collision checks in
a heap, based on estimated times of impact. The time of impact of the top heap element de-
termines the size of the next integration step. Numbers designate the indices of the different
bodies in the simulation.

2.3.2 Estimating time of impact

For the remainder of this chapter, the following notation is used:

t A general time variable. The positions and velocities
of all bodies are functions of .

to  The current time in the simulation. The positions and
velocities of all bodies are known at time ¢.

t.  The time of the next collision between two bodies.

At Some time step into the future. Often the motion of
bodies over the interval [ty, ty + At] is reasoned about.

The key problem that must be solved in order to apply the collision heap scheme is:

Problem 1 Given: The current positions and velocities of two ballistic, convex bodies, and
the closest points between the bodies. Compute: A lower bound on the time of impact of the

two bodies, assuming they continue their current ballistic trajectories.
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One difficulty is that the points on the bodies that will ultimately collide are not readily
found from the given information.? Figure 2.8 illustrates a bad case: the linear and angular
velocities of the bodies are such that the closest points (with total velocities u; and uy) are
moving apart. However, another pair of points, not even considered by the closest features

algorithm, are almost as close as the closest points, and are approaching each other quickly.

body 1

body 2

Figure 2.8: The wvelocities of the closest points only is insufficient for predicting time of
impact.

One method of bounding the time of impact relies on the convexity of the bodies.
Consider the bodies shown in Figure 2.9.  Call the closest points on the two bodies ¢
and cg, and let d = cg — ¢;. Since body 1 is convex, it must lie entirely on one side of the
plane passing through ¢; and perpendicular to the vector d. The same is true for body 2
and the corresponding plane through co. Let x; and x5 be the points at which the bodies

will ultimately collide. No matter where these points are located and what their path to

2There are closed form solutions for the orientation of a rigid body as a function of time that use elliptic
integrals [MR94]. Using these equations with some method of evaluating elliptic integrals might lead to
tighter bounds than the ones discussed here.
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Figure 2.9: Finding o lower bound on the time of impact of convex bodies.

impact will be, they will have to cover the distance d = ||d|| in the direction of d. Let d
be a unit vector along d. Let Di(¢) be an upper bound on the distance traveled by any
point on body 1 along d during the interval [ty,#]. Let Dy(t) similarly bound the distance

traveled by any point on body 2 along —d. If a collision occurs at time te,
Dl(tc) + Dg(tc) > d.

A lower bound on the time of impact can be found by replacing this inequality with an
equality, and solving for t.. To facilitate this, the functions D;(¢) should be kept simple;

Impulse uses quadratic functions.

Problem 2 (TOI coefficients) Given: The position and velocity of a body at the current
time ty, and a direction specified by the unit vector d. Find: Coefficients A and B such
that the distance traveled by any point on the body in the direction d over the interval [to, t]
satisfies

D(t) < A(t — tg)? + B(t — to).
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Consider the case of a ballistic body. The total velocity u(t) of an arbitrary point
x on the body is given by
u(t) =v(t) + w(t) x r(t).

Here, v and w are the linear center of mass velocity and angular velocity of the body, and r
is the position vector from the body’s center of mass to x, all specified in a fixed reference

frame. Since the body is ballistic,
v(t) = v(to) + g(t — to),

where g is the vector acceleration of gravity in the reference frame. Thus, the velocity of x
in the direction d is given by

-~ -~

u(t) -d = [v(te) + gt —to)] - d + w(t) x r(t) - d.

Letting rmax be the maximum distance of any point on the body from the center of mass,
and wpay be the maximum magnitude of the body’s angular velocity during the current
ballistic phase,

u(t)-d < [v(to) + g(t — to)] - d + Tmax@max-

The quantity ry,.x may be pre-computed and stored for each body. The next section dis-

cusses the computation of wpay. Integrating the above equation over time,

t . 1 . .

/t u(r) - ddr < 5 (g A)(t— to)? + [v(to) - A+ rimaxcmas] (¢ — 1)
0

The function on the right hand side is a suitable choice for D(t). For ballistic bodies, the

TOI coefficient routine returns

A = —g-d (2.2)
B = v(t)-d+ rmax@max. (2.3)

Other types of motion besides ballistic motion can be accommodated by the same scheme,
and are discussed later.

To compute a lower bound on the time of impact between body 1 and body 2, a
TOI coefficient routine is called for each of the bodies (In computing the TOI coefficients
for body 2, —d is used in place of &) Call the coefficients for body 1 A; and By; call those
for body 2 Ay and By. The lower bound TOI is the smallest real root ¢ > £ of the quadratic
equation

(A1 + A2)(t — t0)* + (B1 + Ba)(t — to) = d.
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If both bodies are ballistic, a common case in impulse-based simulation, the gravitational
contributions for each body cancel, and A; = —A,. In this case, only a linear equation must
be solved. If the above equation has no real roots greater than £y, then the bodies can never
collide, given their current trajectories. In this case, the time of impact routine returns
infinity. If one of the bodies collides with some other body in the environment, however,
the time of impact between bodies 1 and 2 must be recomputed and may be reduced to a

finite value.

2.3.3 Bounding ballistic angular velocity

The TOI calculations of the last section assume knowledge of the maximum mag-

nitude of the angular velocity of a body during a ballistic trajectory.

Problem 3 Given: The current angular velocity w of a ballistically moving body. Find: A

bound on the maximum magnitude of w while the body moves in its current trajectory.

Since only the magnitude of the body’s angular velocity vector is needed, w can be expressed
in the most convenient frame, in this case, the body frame. Below, vectors and tensors are
expressed in this frame, unless otherwise noted.

The angular momentum of the body is given by
L(t) = Lw(b),

where I is the body frame inertia tensor (see Appendix A.3). There is no time dependence in
this matrix. Since the only external force acting on the body is gravity, which acts through
the center of mass, the angular momentum is conserved in the inertial frame. Although
angular momentum is not conserved in the body frame, it is related to the constant inertial
angular momentum through a time-varying rotation matrix. Hence, the magnitude of the

body angular momentum is conserved. Therefore,

IL(to) || = [[Tw (@)]-

The body inertia tensor I is diagonal. Calling its diagonal elements I, I, and I, the above

equation can be rewritten

wi(t)? wy (1)? ws(1)?

<||L(to>|>2 <|L<to)||>2 <||L(to>|>2
Is 1, I3
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Thus, the body angular velocity vector is constrained to lie on an ellipsoid in R?® (Fig-

ure 2.10). The maximum value of ||w(t)|| is just the length of the semi-major axis of this

Figure 2.10: The body angular velocity vector remains on an ellipsoid over a ballistic
trajectory.

ellipsoid, thus

2w, (t)? + 2wy (to)? + 2w, (t)?
()] < mh'f;:?y’] - Viedlts T (2.4)

This bound was reported in [MC95b], however a slight improvement is possible.
The conservation of energy defines a different ellipsoid on which the angular velocity must
lie. Since there is no net torque acting on a body in a ballistic trajectory, the rotational

kinetic energy is constant, given by
1 T
E = Ew(t) Tw(t).
Since the body inertia tensor is diagonal,
2F = Liw,(t)* + Lwy(t)* + Lw, ()%

Writing this in the general form of an ellipsoid gives

Wa:(t)z wy(t)2 Wy t)2 _
5 T 5 T 5 = 1.
2K 2F 2K

I. Ty I.
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The maximum value of ||w(t)|| is the length of the semi-major axis of this ellipsoid:

= JM%%V+@%MW+@%WN (2.5)

1) < =
|WU“_¢mm@ﬂ@Q) min(I,, I, 1)

Let Imin = min(ly, Iy, I;) and Imax = max(Iy, I, I,). The ratio of the angular
kinetic energy bound (2.5) to the angular momentum bound (2.4) is

_ [Iwwx(t0)2 + Iywy(tO)2 + Izwz(t0)2]jmin
I%wx(t0)2 + Igwy(t0)2 + I?wz(t0)2

This implies

Imin
<r<1. (2.6)

Imax

The angular kinetic energy bound is always at least as tight as the angular momentum
bound. The bounds are the same when the body is rotating exactly about the axis of
minimum inertia, and the bounds are most different when the rotation is exactly about the
axis of maximum inertia. The two bounds are always equivalent if the diagonal entries of

the body inertia tensor are all equal, as is the case for a uniform density sphere or cube.

2.4 Bounding box techniques

The TOI estimation described above assumes that bodies follow ballistic trajec-
tories between collisions. Suppose collision detection is performed on bodies 1 and 2, in-
dicating they are not yet colliding, and let ¢, be the computed time of impact for these
two bodies. The time ¢, reflects the soonest time these bodies may collide, assuming they
continue along their current ballistic trajectories. It is possible, however, that body 1 may
collide with some other body, say body 3, before t. is reached. A collision impulse will be
applied to body 1, sending it on a new ballistic trajectory. Thus, %, is invalid, and must
be recomputed. In fact, all TOIs that involve body 1 or body 3 must be recomputed. The
collision heap is actually a priority queue, since the keys are not static, but can increase or
decrease, causing heap elements to rise or fall before ever reaching the top.

Early versions of Impulse performed O(n) TOI updates upon every collision in an
n body simulation, but the method scales poorly. Consider a group of coins tossed onto a
large, flat surface. Even if the coins are separated by large distances, as they begin to settle
on the surface, collisions become frequent. Every time a coin collides with the surface, the

TOIs between that coin and every other coin must be recomputed, even when the coins are
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in no danger of colliding. The problem is that spatial locality is not being exploited. When
a coin experiences a collision with the surface, it is reasonable to recompute its TOI with
nearby coins, but not with ones that are far away. A related inefficiency is that collision
checks are performed between bodies very far apart and in no danger of colliding. The heap
scheme reduces the frequency of checks between such bodies, however they are still made
at regular intervals. Bounding box techniques may be used to reduce these superfluous
collision checks and TOI updates. The method used in Impulse is based on a hashing
scheme proposed by Overmars for solving point location problems [Ove92]. The technique

is first discussed in a static context, and then the extension to moving bodies is described.

2.4.1 Finding static box intersections

Point location problems occur frequently in computational geometry. One variant

is expressed as follows:

Problem 4 (Point Location) Given a number of non-intersecting cells in space, store
the arrangement such that for a given query point p, the cell containing p (if any) can be

determined efficiently.

Here, a cell is a connected region of space. Overmars presents two solutions to this problem
under the restriction that the cells are fat [Ove92]. The more efficient solution involves
surrounding each cell by an axes-aligned bounding box, and storing the location of these
boxes in a hash table. The technique can be extended to solve a more useful problem for

collision detection:

Problem 5 (Static box intersections) Given n azes-aligned rectangular bozes By, ..., By,
fized in space, store this arrangement such that the boxes that intersect o specified query boz,

By can be determined efficiently.

To attack this problem, consider partitioning space into a cubical tiling with resolu-
tion p. Any point (z,y, z) in space belongs to a unique tile, specified by integer coordinates,

under the tiling map 7:

y | — | lv/pl (2.7)
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The tiles that box B; intersects are found by computing the images under 7 of two
of B;’s corners: the one of minimum z, y, and z coordinates, and the one of maximum z,
y, and z coordinates. The two tiles containing these corners, and the other tiles “between”
them, are the tiles that intersect B;. A tile with coordinates (a, b, ) is between the two tiles
with coordinates (a=,b™,¢™) and (a™,b",ct) ifand only if a~ < a <a™, b~ < b < bT, and
¢~ < c¢ < ct. There are an infinite number of tiles in unbounded space, but only a finite
number that are intersected by at least one box. For each tile that a box intersects, the box’s
label is stored in the hash table, hashed under the tile’s integer coordinates. The query
box B, can also be mapped to a set S of hash buckets according to which tiles it overlaps.
The union of all boxes whose labels appear in buckets of S can be quickly determined, and
this set forms a candidate set of boxes for Problem 5. The candidate set is further checked
against B, using more expensive box intersection tests.

How to choose the tiling resolution p is not obvious, and in fact this can be prob-
lematic when the sizes of the boxes vary widely. If p is small, the larger boxes may intersect
a huge number of tiles, and thus require a large amount of storage in the hash table. In ad-
dition, when the static assumption is relaxed, updating the positions of these large, moving
boxes will be inefficient. On the other hand, if p is large, the tiling will have poor resolution
power for the smaller boxes. Many small boxes may hash to the same tile, so the initially
computed set S is large, and the more expensive box intersection test will be performed
on many pairs. Overmars solves this problem by partitioning the set of cells into groups of
similar size, and creating one hash table for each group. For collision detection, however,
any one of the boxes may need to be checked for intersection with any other—this is not
true in the point location problem—and so partitioning boxes into disjoint groups is not
helpful. The solution is to build a hierarchical hash table, comprising several resolutions,
and checking for intersections among boxes at different resolutions.

To understand the method, consider the one dimensional example, shown in Fig-
ure 2.11.  Here, the six “boxes” (that is, line segments) populating space are labeled A
through F. Let X denote an arbitrary box from this set, and define sz(X) as the size (in
this case, length) of X. As a preprocessing step, one chooses constants « and [, and a

minimal sequence of tiling resolutions, pi, ..., pp, such that

0<axl

p=>1
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Figure 2.11: A one-dimensional example of a hierarchical spatial hash table, with four reso-
lutions. The value p; is the size of the tiles at resolution i. The cells which must be checked
when box E is stored in the table are shaded.

pL>pa > ... > pp > 0,

and so that for each box X there exists an integer 1 < k < n with
sz(X)

a < “on <p. (2.8)

The integer k is called the resolution of box X, abbreviated res(X). In Figure 2.11, o = 0.5
and B = 1.0. This means that each box X must have a length that is from 0.5 to 1.0 times
the width of the cells at resolution res(X). The constraints (2.8) are met by choosing four
tiling resolutions, as shown in the figure, with res(A) = res(B) = res(D) = 4, res(F) = 3,
res(F') = 2, and res(C) = 1. The location of box X is hashed at tiling resolution res(X).
In two (or three) dimensions, the idea is the same. The cells are squares (or cubes) of side
length p;, and the boxes to be stored are rectangles (or rectangular prisms). For box X,
sz(X) is the maximum distance between two opposite edges (or faces) of the box. In what
follows, d denotes the dimension of the boxes and ambient space.

When a box is stored in the hash table, overlap with other boxes must be checked,
some of which may be stored at other resolutions. Assume the boxes are hashed in order
of increasing resolution. When box X is hashed, all enclosing cells at resolutions less than
or equal to res(X) must be checked for other boxes. In Figure 2.11, the cells that must be
checked when box E is stored are shaded. Since body C' overlaps one of these cells, the
bodies E and C' are reported as close, meaning the hash table is unable to verify that the

boxes do not overlap. Formally,
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Definition 1 Bozes X and Y are close if and only if they overlap a common cell at

resolution min(res(X), res(Y)).

When boxes are close, full collision detection must be performed between the corresponding
bodies. The storage requirements and relevant time complexities for a hierarchical spatial

hash table scheme are now analyzed, assuming perfect hashing.

Lemma 1 Let szmin and szmax be the sizes of the smallest and largest bozes to be stored in

the hierarchical hash table. If n is the the number of resolutions required,

n < [logg szma,x-‘ .

@ SZHIiIl

Proof: Choose p; = szpin/a and subsequent tile resolutions such that the constraint

Bpi—1 = ap; (2.9)

is satisfied for 2 < 4 < n. In this way, an appropriate k can be found to satisfy (2.8) for any

box dimension in the interval [Szpyin, Bpn]; an n is needed such that p, > szmax/B. From

(2.9), X )
Pn = (g)”— P1-

Substituting szyi,/« for p1, and using p, > SzZmax/5, yields

(é)nl SZmin > SZmax
« a T B

The lemma follows. O

Lemma 1 gives an important theoretical bound, but it is not always tight. For
instance, if all boxes are one of three sizes (small, medium, or large), than at most three
resolutions are required for the hierarchical spatial hash table, regardless of the ratio of the

dimensions of the largest to smallest box.

Theorem 3 For a set of bozes to be stored in a hierarchical spatial hash table, let R be the
ratio of the largest to smallest box dimension. Then the total number of hash buckets which

must be checked for other bozes when storing a box in the hash table is O(5%log R).

Proof: When box X is stored, cells at resolutions 7 < k, where k = res(X), must be checked
for other boxes. By (2.8), sz(X) < Bpk, and so box X overlaps at most (8 + 1)¢ cells at
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resolution k. The number of cells overlapped at a given resolution ¢+ < k can not be more
than this, and since there are O(log R) resolutions by Lemma 1, the number of overlapped
cells is O(3%1log R). Each cell check corresponds to one bucket check in the hash table, and

the theorem follows. O

Theorem 4 Treating «, 8, and R as constants, a hierarchical hash table can report all pairs

of close boxes among n bozes in O(n + c) time, where c is the number of close pairs.

Proof: By Theorem 3, a constant number of hash buckets must be examined upon storing
each box; the total number of buckets checked is O(n). The time spent reporting closest

pairs among these buckets is O(c). O

A final theorem relates the resolution power of the hierarchical hash table to the

parameter «.

Theorem 5 The hierarchical spatial hash table can guarantee that two boxes X and Y do

not intersect if the distance between them exceeds
1
—Vdmax[sz(X), s2(Y)] (2.10)
o

Proof: Without loss of generality, assume sz(X) > sz(Y'), so that res(X) < res(Y). Assume
X and Y are reported as close. Then they overlap a common cell at resolution res(X). The
maximum distance between any two points in this cell is \/Epres x, and so the distance d
between boxes X and Y satisfies

Vd
< Pres(X)

d (%) sz(X). (2.11)
From (2.8),
Y Pres) 1 (2.12)
sz(X) ~ o’

and the theorem follows. O

The tradeoffs involved in choosing the parameters « and ( are now apparent.
Recall that 0 < a < 1 and 8 > 1. By Theorem 3, the closer 3 is to the minimum value of 1,
the fewer cells must be checked when storing boxes. By Theorem 5, the closer « is to the
upper bound 1, the better the resolving power of the hash table. Finally, Lemma 1 implies

that the larger the ratio 3/a, the fewer resolutions are required to store all of the boxes.
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2.4.2 Coherence and the tiling scheme

In simulation applications, a slight variant of the hierarchical hash table scheme
can improve performance by taking advantage of coherence between problem instances.
Instead of storing box X’s label in buckets at res(X), and only checking the appropriate
buckets at lower resolutions, the label is stored in all buckets that are checked. Using the

example of Figure 2.11, the labels are stored as shown in Figure 2.12. Boxes X and Y are

! P, :
c1 A B | c | CDE | F |
2
=2 A | B | | | e | e | ¢ | F |
o3[a] s [ [ [ [ fojeje] | T T T 1
(¢b]
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—= —
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Figure 2.12: In a variant of the hierarchical hash table scheme, the labels of each box are
stored in every bucket that is checked for other bozes.

reported as close if and only if their labels appear in a common hash bucket at resolution
min(res(X),res(Y")); the close pairs returned by the algorithm are exactly the same as with
the original version. A two-dimensional array of close counters tracks which boxes are
close. Each time X is stored into a hash bucket at resolution ¢ that already contains Y, if
i = min(res(X),res(Y)), then the counter corresponding to the pair (X,Y) is incremented.
When X is removed from such a bucket, the counter is decremented. Pairs of boxes for
which the corresponding counter is zero are not close, and narrow phase collision checking
is not performed between the corresponding bodies. When a counter is incremented from
zero to one, the pair enters the set of bodies on which narrow phase collision checking is
performed.

This scheme retains the state of the boxes between invocations. If a box intersects
the same cells that it did on the last call, no additional work needs to be done to store
that box on the current call. If the box has moved into new cells or left old ones, only

buckets corresponding to these cells must be changed. Boxes corresponding to fixed bodies
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need only be stored into the hash table once. The disadvantage of this scheme is that more
processing is sometimes required to store a box’s label into a bucket. In Figure 2.12, even
though D and E are verified as not close at resolution 3, they must be stored in common
buckets at resolutions 2 and 1, requiring extra processing and adjustment of close counters.
For this reason, the claim of Theorem 4 is not valid (or at least not readily apparent) for
this variant on the algorithm. However this variant is quite efficient in practice, as shown in

Table 2.1. The table shows the number of cycles spent on broad phase collision detection for

millions of cycles
standard | coherence
example hashing hashing | ratio
coins 361 58 6.2
bowling 2188 314 7.0
rattleback top 641 107 6.0
part feeder chute 409 o7 7.2

Table 2.1: Comparison of hashing schemes.

some example simulations, using both the standard hashing algorithm and the coherence
hashing algorithm. The simulations themselves are described in detail in Chapter 7. From
the table, the coherence hashing algorithm is significantly better, consistently running six
or more times faster than the standard hashing algorithm. For this reason, the coherence

hashing algorithm is used in Impulse.

2.4.3 Maintaining the collision heap

The hierarchical spatial hash table described in the last section can be used to cull
unnecessary collision checks and TOI updates for a group of moving bodies in a simulation.
Upon each call to the integrator, the state of the system is evolved from the current time
to to some future time ty + At. The step At is determined by the earliest TOI field on the
top of the collision heap. After At is computed, but before the integrator is called, for each
body an axes aligned bounding box is computed that is guaranteed to enclose the swept
volume of the body during the upcoming integration.

Consider ballistic body ¢, with bounding box B;. The center of mass of body ¢
follows a parabolic trajectory that is known from the current state of the body. B; is found

by noting the position of body i’s center of mass at the current time %y, at the time ¢ + At,
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and possibly at the apex of its parabolic trajectory, should this occur during the interval
[to,t + At]. The box which bounds these two or three points is grown by r;, the maximum

radius of body %, to obtain B; (Figure 2.13). Clearly, computing B; involves a fixed number

Figure 2.13: The bounding box for body i’s swept volume during o segment of a ballistic
trajectory.

of operations, and can be done in constant time. This fact and Theorem 4 imply that all
bounding boxes can be computed, stored in the hash table, and close pairs reported, all in
O(n + ¢) time for an n-body simulation (¢ is the number of close boxes). This is done at
the beginning of each integration step. For static bodies such as walls or platforms, it is not
necessary to grow the bounding box by the body radius, and the resulting bounding boxes
are much tighter; also, boxes for fixed bodies need never be updated.

For each pair of bodies that the hash table deems close, there is a corresponding
element maintained in the collision heap. Pairs not deemed close are in no danger of
colliding during the next integration step. When the close counter for a particular pair is
incremented from zero to one, the TOI for that pair is computed, and the pair is added
to the heap, if it is not there already. Since pairs in the heap are kept sorted on the TOI
field, no pair can collide any sooner than the pair at the top of the heap. The advance
algorithm (Figure 2.14) is performed at the current integration step.  As can be seen from
the algorithm, new pairs are inserted into the active collision heap before any integration

occurs. This is because the computed TOI for such a pair might precede the TOI previously
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advance

At + TOI at top of heap — #
for each body ¢
compute bounding box B; over interval [tg,to + At]
store B; in hierarchical hash table
for each j such that closeCounts(i,j) was incremented to 1
if pair (4,j) is not in heap
compute TOI between bodies ¢ and j
store pair in collision heap
/* since top TOI might have decreased due to new pairs... */
At + TOI at top of heap — #

integrate state of system over [tg,ty + At]

Figure 2.14: advance. Advance the state of the system forward in time, as far as possible,
while guaranteeing no collisions are missed.

at the top of the heap, in which case the integration step must be shortened.

The question of when pairs should be removed from the heap remains. One ap-
proach would be to remove pairs as soon as the hash table indicates the bodies’ boxes are
no longer close. This can cause pairs of bodies to rapidly move in and out of the heap,
especially when one of the boxes is close to the boundary of a tiling cell (Figure 2.15). To
avoid this inefficient behavior, hysteresis is applied to the collision heap. A body pair is
added to the heap whenever the boxes become close, but the pair may not be removed
before it bubbles up to the top of the heap. After a collision check for the top heap element
is made, the closest counter status for that pair is examined. If it is nonzero, the boxes
are still close, and the pair is reinserted into the heap after computing the new TOI. If the
closest counter for that pair is zero, the pair leaves the heap.

The hierarchical hashing scheme also reduces TOI updates upon collision. Recall
that without the hashing scheme, whenever bodies 7 and j collided, all TOIs involving

either one of these bodies must be recomputed. However, with the hashing scheme, TOIs
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| spatial |

partitioning ‘

Figure 2.15: If body 1 is bouncing on fixed body 2, the pair of boxes corresponding to these
bodies may rapidly toggle between close and not close status. To avoid this jittering, hys-
teresis is applied to the collision heap.

are only maintained for pairs in the heap. As a result, if bodies ¢ and j collide, TOIs are
only recomputed between these bodies and nearby bodies. This greatly reduces the cost of
processing collisions.

The sizes of the bounding boxes depend on the current (linear) velocities of the
bodies. These can not be known for all time at the beginning of the simulation. As a result,
tiling resolutions can not be chosen as described in Lemma 1. In practice, this is not such
a problem. In Impulse, the tiling resolutions are based simply upon the maximum radii of
the bodies. Unless the bodies are moving at an extremely fast speed, the number of tiles
intersected by the various boxes remains small. Figure 2.16 shows the reduction in narrow

phase collision detection due to the hierarchical hashing scheme.

2.4.4 Spatial hashing versus coordinate sorting

In addition to the hashing scheme described above, there is another algorithm for
finding intersections of axes-aligned bounding boxes. The algorithm is based on sorting the
coordinates of edges of the bounding boxes along each of the three coordinate axes; it is used
in the I-COLLIDE system [CLMP95] and also in [Bar92]. The algorithm works as follows.
The minimum and maximum z-coordinates of each axes-aligned box are maintained in a
sorted list. The same is done for the y and z coordinates. Two boxes overlap if and only

if their coordinates overlap in each of the three coordinate directions. A two-dimensional
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Figure 2.16: Snapshots taken during the simulation of eight coins tossed onto a flat surface.
The lines indicate the tracking of closest points between bodies; each line corresponds to
one element in the active collision heap. The left figure was produced with the broad phase
collision detection deactivated, and the right one with the broad phase activated. The broad
phase greatly culls collision checks. Also, when o body experiences a collision impulse, only
the TOIs with bodies connected to it by lines need be updated.

example is shown in Figure 2.17. For example, since z, the maximum z-coordinate of box
B is less than x9, the minimum z-coordinate of box Bs, these boxes can not overlap. On
the other hand, z3 < z}| < x4, and y; < y3 < y]. Thus, boxes By and Bs overlap in both
the z and y coordinates, and therefore the boxes themselves overlap. Cohen, et. al. discuss
the relative merits of using a fixed size, cubical box that can accommodate a body at any
orientation versus tighter fitting boxes that change in shape as the body rotates [CLMP95].

Coherence is exploited by updating previously sorted lists to obtain new sorted
lists. In this way, the number of exchanges needed to obtain the new sorted list is expected
to be O(n). It can, however, be O(n?). Consider the situation depicted in Figure 2.18. The
maximum and minimum y-coordinates of all the boxes are clustered closely together. Even
with very small motions from one time step to the next, O(n?) exchanges result in resorting
the y-coordinates; coherence breaks down. This example is not contrived. Imagine throwing
a group of dice onto a flat horizontal surface. As the dice come to rest, their bounding
boxes will tend to cluster along the vertical coordinate. Since coordinate sorting is based
on dimension reduction, the coordinates may be clustered even when the original boxes are
not; the clustering becomes worse in higher dimensions. One way of handling the clustering
problem is to perform a less drastic dimension reduction, projecting the three-dimensional

boxes first into two-dimensional rectangles in the plane, and reporting intersections among
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Figure 2.17: A two dimensional version of F-COLLIDE’s bounding box check. Two boxes
overlap if and only if their projections onto the x- and y-azes overlap.

the rectangles in O(n log n+k) time, where k is the number of intersections [Ede83]. Hashing
schemes do not suffer from the clustering problem. Coherence always results in efficient
updating of the hash table, unless the number of box overlaps in three dimensions is large.

Coordinate sorting does have one advantage over hashing: no hashing scheme culls
as many body pairs as coordinate sorting. Cohen, et. al. claim that choosing a near-optimal
cell size is difficult, and failing to do so results in large memory usage and computational
inefficiency. These claims are largely mitigated with a hierarchical hash table based on
multiple cell sizes. A very efficient collision detection scheme based on boxes that are not

axes aligned is described in [GLM96].
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Figure 2.18: A bad case for coordinate sorting. The dense clustering of box extrema along
the y-axis results in O(n?) exchanges for each new sort of the coordinates.

2.5 Generalizing collision detection

The collision detection techniques described thus far are tailored to ballistic bodies,
which are ubiquitous in impulse-based simulation. The techniques are extensible to other

types of motion with the definition of two routines:

1. A swept volume routine. This takes the state of the body at the current time ¢g,
and a time interval At, and returns an axes-aligned box that encloses the center of

mass’s trajectory during the time interval [to, tg + At].

2. A time of impact coefficients routine. This takes the current state of the body,
and a directional vector d. It returns two coefficients, A and B, such that the distance

any point on the body travels in the direction of d is bounded by the expression

At —tg)> + B(t —ty), t > to. (2.13)

The swept volume routine is needed during the broad phase of collision detection and the
TOI coefficient routine is needed during the narrow phase. Previous sections described

how the swept volume and TOI coefficients are estimated for ballistic bodies. For fixed
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bodies, the routines are trivial: the swept volume is always the current volume occupied by
the body, and the TOI coefficients are both zero. The swept volume and TOI coefficient
routines for bodies connected by joints are discussed in Chapter 5.

Another type of motion is scripted motion. Scripted bodies follow unalterable
trajectories through state space; they are impervious to external forces like gravity, and
collisions with other bodies. An example application of a scripted body is a vibrating part
feeder. Since the mass of the feeder is much greater than the mass of the small parts it
vibrates along a track, one could neglect the effects on the feeder of collisions with the parts.
Instead, the feeder might execute some prescribed, sinusoidal motion. Impulse provides
several types of scripted bodies, and others could be added for specific applications. Some
simulations with scripted bodies are described in Chapter 7. One type of scripted body is a
cycler. A cycler’s center of mass follows an elliptical path through space, while the cycler’s
orientation remains constant. For illustration, consider the case where the path is a circle
in the z-y plane. Let r be the radius of this circle, and let {2 be the angular speed at which
the center of mass moves around the circle. This is not the same as the angular velocity of
the body, which is zero since the orientation is held constant.

First consider the swept volume routine. Since the center of mass remains in the
z-y plane, the minimum and maximum z-coordinates of the center of mass are both 0. The
minimum and maximum z- and y-coordinates are inferred from the smallest axes aligned
rectangle in the z-y plane which encloses several points: p(tg), the current location of the
center of mass; p(typ + At), the location of the center of mass at a time At in the future;
and any crossings of the trajectory with the z- and y-axes over the interval [ty,ty + At]

(Figure 2.19). All of these points are easily computed since the trajectory in the z-y plane

y y y
P(ty+ At)
|
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==ty

X

p(tai\
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Figure 2.19: The axes aligned bounding rectangles in the -y plane for a cycler body. Three
different cases are shown. The point p(to) is the current position of the center of mass, and
the point p(ty + At) is the position of the center of mass a time At in the future.
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is known in closed form:

z | | rcos Ot
Y rsin Qf

Now consider the TOI coefficients for this cycler. Since the angular velocity of
a cycler is zero, every point on the body has the same velocity as the center of mass at
all times. Thus it suffices to bound the motion of the center of mass along the directional
vector d. There are different ways to do this. Let v(¢) be the linear velocity of the center
of mass of the body. The magnitude of v(t) is a constant, equal to Q. Therefore, if D is
the distance that any point on the body travels in the direction El,

D < rQ(t — t). (2.14)

This bound suggests choosing the TOI coefficients in (2.13) to be A =0 and B = r{2.

A second method for bounding motion is to observe that the current velocity of the
center of mass in the direction d is given by v(tp) - d. The magnitude of the acceleration of
the center of mass is bounded by 2. This is the centripetal acceleration, always directed

toward the center of rotation. Thus,
1 A
D < 57«92(16—160)2 + [v(to) - d](t — to). (2.15)

This suggests choosing the TOI coefficients A = %7“(22 and B = v(tp) - d.

The coefficients indicated by (2.14) and (2.15) are for a linear and quadratic model
for distance traveled, respectively. In general, the quadratic model has a smaller linear term
and will be a tighter bound on the distance traveled up to some time. After that time, the
quadratic term will dominate, and the quadratic bound will overtake the linear one. To
decide which model to apply, one can use the current distance d to the other body. Impulse
checks the distance at which the quadratic model overtakes the linear one. If this is greater
than d, the quadratic coefficients are returned, otherwise the linear coefficients are returned.
The time at which the two models are equal is obtained by equating the right hand sides
of (2.14) and (2.15):

(r2) (¢ 10) = Sr9(t — 10)? + [v(to) - ]t — to),

which yields
2 [TQ —v(to) - El]

t—tp= o
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At this time, the distance bound given by both models is

2 [TQ —v(ty) - &]

D=
Q

If this bound is less than the distance to the other body, the cycler TOI coefficients routine
returns the coefficients of t? and ¢ in (2.14), otherwise the coefficients in (2.15) are returned.
This strategy gives whichever bound is likely to be tighter.

Other types of motion may be handled in the same way; the analyses are similar
to the one for cyclers described above. It is not necessary to perform analyses based on
pairs of motion types, for instance for cycler-ballistic pairs, cycler-fixed pairs, ballistic-fixed
pairs, and so on. Rather, the swept volume and TOI coefficient routines are defined for
each single motion type, and then collision detection can be performed between this type
and all other motion types. For n types of motion, only O(n) analyses are required instead
of O(n?). This feature is also shared by the collision detection algorithm of Von Herzen,
et. al. [HBZ90]. Lipschitz bounds need only be computed on a per body basis, not on a
per body pair basis. The bounds for individual types are combined to form the bound for

a particular pair.
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Chapter 3

Collision Response

The collision response problem is concerned with computing the pair of equal and
opposite impulses that should be applied to the colliding bodies in order to prevent pene-
tration. Like contact forces, collision impulses are subject to frictional constraints, as well
as other constraints governing the energy dissipation during collisions. Collision response
algorithms fall into two broad categories. The first category makes the constant sliding di-
rection assumption: the direction of the relative tangential velocity between colliding bodies
at the contact point remains constant during a collision. This assumption is convenient be-
cause the direction of the frictional force varies with the sliding direction. Holding these
directions fixed allows one to solve for the collision impulse and post-collision velocities of
the bodies by solving a system of algebraic equations. Many variations on this theme are
described by Brach [Bra91]. In the context of interactive dynamic simulation, this approach
is used almost exclusively [Bar92, CS89, Hah88, LRK94, MW88, NM93]. It is often a fairly
strong approximation, particularly for collisions between three-dimensional bodies.

Just as a collision impulse changes the relative normal velocity between colliding
bodies, it also changes the relative tangential velocities; the direction of the latter is not
constant. The second class of collision response methods use differential equations that
describe the collision process. They account for the change in sliding direction and the
possibility of transient sticking that can occur during impact. These approaches date back to
Routh [Rou05], and have been studied by many others [BK94, Kel86, MC95a, Str91, WM87].
For impulse-based simulation, an accurate collision model is required for physically valid
results.

This chapter describes a suitable collision resolution algorithm for an impulse-
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based simulator, which has been implemented in Impulse. The main contribution is a
computational model for the differential analysis of the collision process; this approach is
more accurate than the algebraic one. Building on work of Routh and Keller, new equations
are derived that are suitable for numeric integration. The algorithm presented here also
incorporates Strong’s improved model for restitution. To accomplish this, the collision
integration is divided into three phases, and two different parameterizations are used. This
chapter also presents new results concerning the determinacy of collision dynamics under
the Coulomb friction model. Recently, Bhatt and Koechling have explored these issues
[BK94, BK96b], and in [BK96a] they report some of the same results. The geometric
proofs given in this chapter differ significantly from theirs, which are based on the roots of
polynomials; in our opinion, the geometric proofs are simpler and more intuitive. Finally,
this chapter discusses some approaches for modeling static friction in an impulse-based

context.

3.1 Assumptions of collision response model

The physical phenomena that occur between bodies in contact result from com-
plex interactions at the atomic level. Finite element methods are a first step toward a
tractable model, but are still too computationally expensive to be used in the context of
interactive simulation A much greater approximation, but one which significantly reduces
computational costs is the rigid body model. This model is reasonable for many everyday
physical systems; it is most tenuous during collisions between bodies, which involve surface
deformations. Still, many physical phenomena can be captured with a rigid body model, it

has wide application in engineering, and it is the model used by Impulse.
Assumption 1 (Rigid bodies) All physical objects in the simulation are perfectly rigid.

This model has several implications. When two objects collide, the duration of the collision
is infinitesimal, and the forces needed to prevent penetration are impulsive, instantaneously
changing the velocities of the colliding bodies. Since velocities are finite, the positions of
the colliding bodies are constant during the collision. Non-impulsive forces (like gravity)
have no effect over infinitesimal intervals, and may thus be ignored in collision analysis.

The rigid body assumption is made frequently in collision analysis.
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When two real bodies collide, there is a period of deformation during which elastic
energy is stored in the bodies, followed by a period of restitution during which some of this

energy is returned as kinetic energy, as the bodies rebound off each other (Figure 3.1). The

1 3 }
2 <-; ;2

~—— compression restitution

Figure 3.1: The normal velocity, force, impulse, and work during the compression and
restitution phases of a collision. The ’z’ subscript denotes the normal direction at the
collision point.

rigid body assumption is usually coupled with a model to approximate this process. The

simplest model, and the one used in most elementary physics texts, is Newton’s impact law:

Uz(tf) = —€ Uz(o)'

Here u, is the normal component of the relative velocity between the bodies; wu,(t) < 0,
means the bodies are moving toward another at time ¢, and u,(f) > 0 means they are
separating. The collision starts at time zero, and ends at time ;. The point of maximum
compression, tmc, is the point at which the normal velocity changes sign, and the phase
changes from compression to restitution. The constant e is called the coefficient of resti-

tution, and make take values between 0 and 1, depending on material properties of the
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colliding bodies. Newton’s law is linear, and lends itself nicely to an algebraic solution for
the post-collision velocities.
Poisson’s hypothesis, an alternative restitution law, uses e as a ratio between

impulses rather than velocities:

p=(ty) = pz(tme) = € pz(tmc)-

Here, p, is the normal impulse, the time integral of the normal force f, delivered from
one body to another. Poisson’s hypothesis states that the normal component of impulse
delivered during the restitution phase is e times the normal component of impulse delivered
during the compression phase. This is equivalent to Newton’s law for frictionless collisions.
Keller uses Poisson’s hypothesis to derive equations of collision with friction [Kel86].

Both Newton’s impact law and Poisson’s hypothesis can cause the total energy of
the colliding bodies to increase during a collision, when friction is present. To correct this
defect, Stronge proposes a new definition of the coefficient of restitution, as a ratio of the

work done by the normal components of impulse [Str91]:

Assumption 2 (Stronge’s hypothesis) Let W,(t) be the work done by the normal com-

ponents of the (equal and opposite) collision impulses during a collision. Then
W (ty) — Waltme) = —€ W (tme).

The positive work done during the restitution phase is —e? times the negative work done
during compression. Unlike the other models, Stronge’s model guarantees that the effects
of the normal forces, like the tangential frictional forces, are always dissipative; they can
not add energy to the system. This agrees with the description of the physical process of
collision. Stronge’s model is employed by the simulator Impulse.

The tangential components of fore and impulse that develop during a collision are
governed by a friction law. A very common friction formulation, and the one employed in

Impulse, is the Coulomb friction law:

Assumption 3 (Coulomb friction law) At some instant during a collision between bod-
tes 1 and 2, let u be the contact point velocity of body 1 relative to the contact point velocity
of body 2. Let uy be the tangential component of u, and let Gy be o unit vector in the di-

rection of wy. Let £, and £, be the normal and tangential (frictional) components of force
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everted by body 2 on body 1, respectively. Then

uy 7é 0 = ft = —,U,anHflt
u =0 = [If] <plfn

where 1 is the coefficient of friction.

In order, the equations above correspond to dynamic and static friction. While the bodies
are sliding relative to one another, the frictional force is exactly opposed to the direction
of sliding. If the relative tangential velocity is zero, all that is known is that the total force

lies in a friction cone.

3.2 Computing collision impulses

Collision processing is initiated when two criteria are met:

1. The collision detection system reports that the distance between two bodies is less

than the collision epsilon.

2. The velocities of these bodies are such that the distance between the closest points is

decreasing.

The job of the collision resolution system is to compute a pair of equal and opposite collision
impulses to be applied to the colliding bodies at the contact points. These impulses must
prevent penetration of the bodies, and also satisfy the physical laws discussed in the previous
section. This section describes a method for computing these impulses. The situation is as
depicted in Figure 3.2. The collision frame F,. ] has its origin at the collision point and its
z-axis aligned with the mutual surface normal at this point, pointing from body 2 toward
body body 1. For non-smooth bodies, such as polyhedra, the surface normal is defined to
lie along the line between the closest points. For body i: m; is the mass of the body; I; is
the 3 x 3 mass matrix, described in Appendix A.3; v; is the linear velocity of the enter of
mass; w; is the angular velocity of the body; u; is the absolute velocity of the contact point
on the body; and r; is the offset vector from the body’s center of mass to the contact point.
Also, p is the collision impulse delivered from body 2 to body 1, and —p is the reaction
impulse delivered from body 1 to body 2. Throughout this section, it is assumed that all

vectors and tensors are resolved in the collision frame.
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Figure 3.2: A collision between two bodies, indicating some of the quantities used during
collision analysis. The collision frame F ., is chosen so that the z-awis is aligned with the
surface normals at the collision point.

3.2.1 The equations of collision

Basic Newtonian physics dictate how collision velocities and impulses evolve. Dur-
ing a collision, all non-impulsive forces acting on body 1 are negligible; only the collision
force f(t) needs to be considered, which also induces a torque of r x f(¢). From the Newton-

Euler equations (Appendix A.3),

£(t) = may(t)

ry X f(t) = Ilal(t) + wl(t) X Ilwl(t),

where a; and a; are the linear and angular accelerations of body 1. The last term in

the second equation comprises inertial forces, which are also negligible during collision; it
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may be dropped. Also, m1,I;, and r; are constants. With these facts in mind, the above

equations can be integrated over time to give

p(t) = miAvi() (3.1)
L Awi(t), (3.2)

ry X py(t)

where p is the collision impulse:

p(t) = /0 “£(r) dr. (3.3)

These equations relate the impulse delivered up to some time ¢ to body 1’s veloc-
ity changes up to that point. Using time as a parameter is valid for the above derivation,
in which a collision is a event of finite duration, during which large but bounded forces
act. For the rigid body model, however, a collision is really the limit of this process, as
ty approaches zero and the collision forces become infinite. Difficulties in analysis arise
because the collision occurs over a zero time interval, and the velocities become discontin-
uous functions of time. These problems are remedied by choosing a new parameterization
for the collision. A collision parameter 7 is chosen, which monotonically increases during
the course of the collision. All velocities of the colliding bodies as well as the accumulated
impulse are expressed as functions of y. One natural choice v = p,, the normal component
of p. Clearly p, begins at zero and monotonically increases during a collision: it is the
integral of the normal component of force exerted by body 2 on body 1, and this force
component is always positive in F,; (Figure 3.2) because the bodies can only push on
each other. Furthermore, velocities will be shown to be continuous functions of this pa-
rameter during a collision. Other collision parameters will be used as well; when generality
is required, v denotes an arbitrary collision parameter. A prime (/) is sometimes used to
denote differentiation with respect to the collision parameter.

Rewriting (3.1) and (3.2), and changing to the new collision parameter :

Avit) = —opl)
Awi(y) = Iflrlxp(t).

The contact point velocity u; is given by

u; (y) = vi(y) + wi(y) X r1.
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Combining the above three equations,

Bw() = —op()+ (I x p(®) xm
= <L1—f11111~”1> P(7);
m1

where 1 is the cross-product matrix corresponding to r; (Appendix A.2), and 1 is the 3 x 3
identity matrix. The same derivation can be performed for body 2; the only difference is

that p is replaced with the reaction —p. The result is:

1

Auy(y) = — (m—21 — f2121f2> P2(7)-

Letting u(y) denote the relative contact point velocity, that is u; — ug,

Bul) = (o4 o)1= (BL ' + faxglfg)]lpm, (3.4)

K
or more succinctly,

Au(y) = Kp(7). (3.5)

The 3 x 3 matrix K is called the collision matrix; it plays a central role in computing the

impulse to resolve the collision.

Theorem 6 (properties of K) For a given collision, the collision matriz K defined by

(3.4) is constant, nonsingular, symmetric, and positive definite.

Proof: Constancy of K is evident from (3.4): it depends only on the masses, mass distribu-
tions, and contact point locations of the colliding bodies, all of which are constant during a
collision. For the other claims, note that K is the sum of three matrices: a positive scalar
multiple of the identity matrix, which is clearly symmetric positive definite; Ay = —1 Il_lf'l;
and Ay = —1ol, 1§,. The mass matrices I; are also symmetric positive definite (see Chap-
ter 6), therefore so are their inverses. Since ¥; is skew-symmetric, it follows that AT = A;,

so A; is symmetric. For an arbitrary vector x,

x'Ax = —fo‘iIi_lf'ix = (f‘ix)T Ii_l (t;x) = WTIi_lw,

where w = r; X v. Since I ' is positive definite, the right hand side is non-negative, and

therefore A; is positive semi-definite. Finally, since K is the sum of three symmetric ma-

trices, of which one is positive definite and two are positive semi-definite, K is symmetric
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positive definite, which also implies nonsingularity. O

The main result of this section is embodied in the following theorem.

Theorem 7 (equations of collision) During a collision parameterized by vy, the relative

contact point velocity and the collision impulse evolve according to:

%u(w - %pm
%p(w - —1%11(7)

Proof: From (3.5), Au(y) = u(y) — u(0) = Kp(y). Since K is constant, differentiating
with respect to <y yields the first equation of the theorem. Since K is also nonsingular, this

equation may be inverted, yielding the second equation. O

3.2.2 Sliding mode

Bodies 1 and 2 are sliding relative to one another when the tangential component
of relative contact velocity u(+y) is nonzero. In this case it is possible to derive a first order

differential equation for u, using p, as the collision parameter.

Definition 2 Let 6 be the relative sliding direction at some point during a collision, that
is, 0 = Tan! (uy,uy), where the arctangent returns values in four quadrants. Define the

sliding vector £(6) as

—pcos 6 — [ \fuZ + ud
£0) = | —psin® | = | —puy/\/u2 +u2
1

1
where p is the coefficient of friction.
The significance of the sliding vector is seen in the next lemma.

Lemma 2 Let 0(p,) be the relative sliding direction during a collision. While the bodies

are sliding relative to each other,

d

@p(pz) = £(0(p2))-
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Proof: By the chain rule,

d d dt dt

@p(pz) = @p(pz) d—pz(pz) = f(p.) @(pz),

where f(p,) is the collision force, the time derivative of impulse. By the Coulomb friction

law,
—pcos(pz) fz(pz)
£(p:) = | —psind(p:)f.(p:)
f=(p2)
under sliding conditions. Combining these equations and noting that (dt/dp,)(p.) = 1/f.(pz)
proves the lemma. O

Combining Theorem 7 and Lemma, 2 produces:!

Theorem 8 (sliding ODE w.r.t p,) While two colliding bodies are in sliding contact,

the derivatives of u with respect to p, are given by

— g /[ uZ + ul
d
dpzu:Kﬁ(Q):K —,uuy/,/ +u

This system of three nonlinear, first-order ODEs describe how the relative velocity
evolves during a collision. By numerically integrating these equations using p, as the inde-
pendent variable, u can be tracked over the course of the collision, as long as the sliding
velocity is nonzero. Figure 3.3 shows solution trajectories of the ODE system projected into

the uz-uy plane. For this example, u was chosen as 0.2, and

+8 -2 +1
K=|-2 +3 -1
+1 —1 +5

The diamonds in the figure mark different initial values for u, and u, at the beginning
of the collision. The flow lines show how the relative tangential velocity evolves during the
collision. For a given collision, only one of the flow lines is followed.

One counterintuitive aspect of Figure 3.3 is that many of the flow lines diverge from

the origin, indicating that the magnitude of the sliding velocity increases during collision.

!The explicit dependence of u and 6 on p, is eliminated for clarity.
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Evolution of Tangential Velocity

10 - & & ]

y velocity

X velocity

Figure 3.3: Solution trajectories of the ODE system of Theorem 8 projected into the uz-uy
plane.

This behavior seems contrary to the laws of friction, which stipulate frictional force oppose
sliding. The behavior is understood from Figure 3.4. In this case, the tangential velocity
is zero at the beginning of the collision, but nonzero at the end of the collision. Although
the frictional force opposes the motion, it can not overcome the effects of the normal force,

which induces an angular velocity that causes the rod to slip.

3.2.3 Sticking mode

When the tangential component of relative contact velocity u vanishes, the bodies
are sticking, and the analysis of the previous section 3.2.2 is not valid. Under sticking
conditions, the Coulomb friction model does not completely determine the frictional force,

but only requires that its magnitude not exceed p times the magnitude of the normal force.
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before collision during collision after collision

Figure 3.4: A situation where the tangential relative contact velocity of the rod (uy) starts at
zero and increases during the course of the collision, even though the frictional force resists
this change in velocity.

When sticking occurs, we assume, as does Routh, that if the frictional forces are strong
enough to maintain the sticking condition, they will do so [Rou05]. If they are not strong
enough, sliding will resume. The following theorem provides the means to test which of

these behaviors occurs.

Theorem 9 (Stable sticking) For a particular collision with collision matriz K, the fric-

tional collision forces can maintain sticking if and only if
(K3 + (K3')* < (K3,
where Ki;I denotes the (i, j) element of the inverse collision matriz K.

Proof: Consider the collision force f(p,) at point p, in the collision. From the Coulomb

friction law, if there is no sliding the components of f must satisfy

fa:(pz)2 + fy(pz)2 < M2fz(pz)2a

or, expressing force as the time derivative of accumulated impulse,

ol o < (ol

Multiplying the above inequality by (dt/dp,)?:

EZ;Z (pz)]2 + [ZZZZ (pz)]2 < Bﬁi (pz)r-
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If the sticking condition is stable, the derivatives of relative tangential velocity vanish:

ugy(pz) = uy(p,) = 0. In this case, Theorem 7 implies

. 0 K3
3y PP:) = K'| 0 |=] Ky |ullp) (3.6)
u! (pz) Kg_:),l

Combining the previous two equations proves the theorem. O

3.3 Collision integration

The collision response calculation is based on tracking the relative contact veloc-
ity u(y) during a collision. Figure 3.5 depicts relative contact velocity space; each point
(ug, Uy, u,) in this space corresponds to a particular relative contact point velocity between
body 1 and body 2. The figure also depicts the trajectories u(vy) for three different col-
lisions. For all of these collisions, v, < 0 at the beginning of the trajectory since that the
bodies are moving toward each other, and u, > 0 at the end of the trajectory since the bod-
ies are separating. The plane u, = 0 is the plane of maximum compression; as u(7y) crosses
this plane, the collision phase changes from compression to restitution (c.f. Figure 3.1).
As long u; and u, are not both zero, u(y) is evolved according to sliding equations, such
as those given by Theorem 8. Path A is a case for which sliding occurs throughout the
collision. If while tracking u(vy), u, and u, both vanish, then u(vy) lies on the u, axis, also
called the line of sticking. In this case, Theorem 8 is not applicable; instead the test of
Theorem 9 is performed to determine if the sticking condition is stable. If it is, u(y) will
remain on the line of sticking for the duration of the collision; path C exhibits this behavior.
If the sticking is not stable, meaning the frictional forces are not strong enough to prevent
tangential slip, the point u(y) leaves the line of sticking, again moving according to sliding
equations. Path B exhibits this behavior. The question of exactly how u(7y) leaves the line
of sticking has not been discussed; this is a deep question that will be treated in Section 3.4.
If the paths of Figure 3.5 are projected into the u;-u, plane, one obtains flow lines like the
ones in Figure 3.3.

This process of tracking the point u(y) during collision is called collision inte-

gration. Given u(yp), the initial relative contact point velocity, and u(yy), the value of
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Figure 3.5: Trajectories through relative contact velocity space for three different collisions.

relative contact point velocity at the end of the collision, the collision impulse may be easily

determined. Inverting (3.5),
p(y) = K 'Au(y) =K' (u(yy) — u(m)),

Since p(ys) is the total impulse delivered during the collision, computing p(yy) is the
ultimate goal of the collision resolution system. The collision integration process described
above is somewhat simplified, and the purpose of this section is to describe the process in
more detail. Procedures to handle stable and transient sticking are developed, as well as

the termination conditions that indicate when the integration is to stop. The latter are

based on Stronge’s hypothesis for restitution.
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3.3.1 Work done by collision forces

Consider a force f applied to a particle that moves along a continuous path x(t)
through space. The total work performed by this force on the particle over the time interval
[0,2f] is given by

w= [ () at

to
If x(t) is a line segment and f(¢) a constant force directed along this segment, this boils
down to the familiar “work equals forces times distance” rule. During a collision, f is a
collision force applied to a body at the contact point, and x is the absolute velocity of the
contact point, for example u; on body 1. The formulation for work given above is not
usable during a rigid body collision, because the collision forces are infinite and the time
interval is infinitesimal. This can be remedied with the familiar tactic of re-parameterizing

the collision with a different variable yv. With this change of variables,

f
f

Wy = (7) - a1 (v) (%) dry.

0

Replacing f(y) with (d/dt)p(y), applying the chain rule, and rearranging gives

Wi = /va u(y) - %D(v) dy = /va ui(y) - p'(7) dv.

This expresses the work done by the collision impulse on body 1. Similarly, the work done

by the reaction impulse on body 2 is given by

Wy =— /OW uy(y) - p'(v) dv.

Combining the above two equations, and recalling that u = u; — us, the total work done

by the collision impulse on both bodies is

s
W= [T um-p) dr
The differential form of this equation will be useful:

Theorem 10 The derivative of work done by the collision impulse with respect to the col-
liston parameter vy is given by

aw

d—7(7) =u(y)-p'(7) = u(y) - K''(7).
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Since K™! is a known constant, and the path u(y) completely determines u’(vy),
Theorem 10 implies that knowing the complete path u(7y) is enough to specify the total

work done on the colliding bodies. In fact, knowing even less is sufficient:

Theorem 11 (path independence of W) Suppose the relative contact velocity u(y) pro-
ceeds from u(yy) to u(ys) during a collision, over some arbitrary path; let Au(ys) =
u(yr) —u(y). The total work done by the collision forces is independent of the path taken,
and is given by

W == (u(yy) +u(y))” K™ Au(yy).

1
2
Proof: From Theorem 10,

aw

o [u(n)" K ') +ul)” K ')

DN | =

() =u)" K" u'(y) =

Transposing the second term in brackets—a scalar—and observing the symmetry of K1,

dw

o (=5 [ KT () + ()" K )]

1
2

Since K~! is a constant,

By the Fundamental Theorem of Calculus, the total work