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Abstract

Advances in computing hardware, software, and network technology have enabled

a new class of interactive applications involving 3D animated characters to become

increasingly feasible. Many such applications require algorithms that allow both

autonomous and user-controlled animated human figures to move naturally and real-

istically in response to task-level commands.

This thesis presents a research framework aimed at facilitating the high-level con-

trol of animated characters in real-time virtual environments. The framework design

is inspired by research in motion planning, control, and sensing for autonomous mobile

robots. In particular, the problem of synthesizing motions for animated characters is

approached from the standpoint of modelling and controlling a “virtual robot”.

Two important classes of task-level motion control are investigated in detail.

First, a technique for quickly synthesizing from navigation goals the collision-free

motions for animated human figures in dynamic virtual environments is presented.

The method combines a fast 2D path planner, a path-following controller, and cyclic

motion capture data to generate the underlying animation. The rendering hardware

is used to simulate the visual perception of a character, providing a feedback loop

to the overall navigation strategy. Second, a method for automatically generating

collision-free human arm motions to complete high-level object grasping and manipu-

lation tasks is formulated. Given a target position and orientation in the workspace, a

goal configuration for the arm is computed using an inverse kinematics algorithm that

attempts to select a collision-free, natural posture. If successful, a randomized path

planner is invoked to search the configuration space (C-space) of the arm, modeled

as a kinematic chain with seven degrees of freedom (DOF), for a collision-free path

v



connecting the arm initial configuration to the goal configuration.

Results from experiments using these techniques in an interactive application with

high-level scripting capabilities are presented and evaluated. Finally, how this re-

search fits into the larger context of automatic motion synthesis for animated agents

is discussed.
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Chapter 1

Introduction

1.1 The Challenge of Model Complexity

Computer graphics involves the creation of images of things both real and imagined.

Computer animation entails the generation and display of a series of such images. In

either case, mathematical models are used to represent the geometry, appearance, and

motion of the objects being rendered. Recent improvements in computer hardware

and software have enabled mathematical models of increasing complexity to be used.

Indeed, synthetic images of some objects have been created which bear remarkable

similarity to actual photographs of real objects. As computing technology continues

to improve, we can expect computer graphics and animation of increasing realism in

the future. Ultimately, the dream of virtual reality may be fully realized, in which

artificial scenes can be created that are indistinguishable from real life.

The fundamental challenges in computer graphics and animation lie primarily in

having to deal with complex geometric, kinematic, and physical models. Researchers

have developed 3D scanning, procedural modeling, and image-based rendering tech-

niques in order to automate the modeling of the geometry and appearance of complex

objects. For the purposes of animation, algorithms are needed to automate the gen-

eration of motions for such objects. Moreover, even objects whose geometry and

appearance are very simple, may be difficult to animate due to the number of moving

parts/joints which must be dealt with.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: An animated human character composed of 52 moving parts with a total
of 104 degrees of freedom

1.2 Task-Level Character Animation

This thesis concerns the automatic generation of motion for animated characters.

Character animation poses particular challenges to motion generation due to the

often complex, multi-jointed structure of the models (see Figure 1.1). In addition,

the motion of each joint may be subject to multiple kinematic or dynamic constraints

in order to produce body poses and motions that appear natural. Fundamentally,

our goal is to create software that will enable a character to move naturally given

a task-level command such as “walk over to the table and pick up the book”. The

underlying software must automatically generate the motion necessary to animate

the character performing the given task.

We have concentrated on the animation of human-like character models, though

the basic ideas contained in this thesis are applicable to other types of characters. We

have focused our experimental efforts on human-like models for the following reasons:

1. Human characters (or characters with a human-like structure) are commonly

portrayed in animated films or video games.
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2. Human character models involve a complex, multi-jointed kinematic structure

that is challenging, such that synthesizing human motion can be considered a

benchmark for motion generation algorithms.

3. Real humans are very good at evaluating human motion and detecting subtle

flaws, thus making it easier to compare the output of various motion generation

strategies.

Researchers in the field have recently coined several new terms that refer specifi-

cally to animated human characters. Some of the more popular terminology includes

“virtual humans”, “virtual actors”, “digital actors”, “synthetic actors”, “animated

agents”, and “avatars”. Many of these terms have found their way into the main-

stream media. Although these terms are often used synonymously, their origins can

be traced back to disparate applications involving animated human characters that

are very different in terms of scope and purpose. These differences stem primarily

from the required characteristics of the animated characters, two of which are dis-

cussed in the next section. In order to avoid confusion due to pre-conceived notions,

we will simply use the term animated characters as it applies in the broad sense.

1.3 Autonomy and Interactivity

Beyond geometry and kinematics, animated characters possess two fundamental char-

acteristics which are primarily determined by the application domain in which they

are being used:

The degree of autonomy : This generally refers to how much intervention the

character requires from a user. At one extreme, are completely fine-grained, user-

controlled characters that demand a human operator specify all joint motions by

hand. At the other extreme, are completely autonomous characters whose motions are

controlled entirely by a software program requiring no user intervention whatsoever.
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Figure 1.2: The characteristics of animated characters vary according to the applica-
tion domain.

The degree of interactivity : This has to do with the time constraints of the

application in relation to the user. At one extreme are completely non-interactive

(off-line) software applications, such as simulations that have no strict execution time

requirements. At the other extreme are highly-interactive applications that have

strict execution time constraints. A common requirement is that of maintaining

display update rates at 30 frames per second in order to allow real-time interaction

with a user.

These two characteristics are orthogonal, and form a space of potential uses for

character motion generation software that covers a wide range of applications. These

include virtual reality, video games, web avatars, digital actors for desktop movie

studios, and real-time virtual human simulations for urban, industrial, or military

purposes. Some of these are plotted on the diagram in Figure 1.2.

As researchers, we are intrigued by the most challenging problems, namely fully-

autonomous human character motion generation for applications that provide real-

time interaction (such as virtual reality or video games). Clearly, any motion gener-

ation algorithm that is able to satisfy these criteria can also be used in applications
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with less demanding constraints. For example, generated motion for a character in

an interactive application could be simply stored and used later to animate the same

character off-line. However, generated motion that is acceptable for interactive video

games may not be of an acceptable quality for off-line animation production (in terms

of smoothness, naturalness, precision, or general artistic impression). Thus, tradeoffs

exist between the quality, flexibility, and the time needed to compute motions for

various applications.

1.4 Motivation and Previous Work

The primary motivation for task-level control in off-line animation systems stems

from the time and labor required to specify motion trajectories for complex multi-

jointed characters, such as human figures. Traditional keyframe animation techniques

are extremely labor-intensive and require the artistic skill of highly-trained animators.

For real-time interactive animation, keyframing “on-the-fly” is not an option. Rather,

animation for both autonomous characters and characters under high-level control by

the user must be generated via software.

The body of research relating to algorithms for generating animation is young

but vast[TT90, BPW92, TDT96]. We only highlight here a few of the key ideas and

briefly explain how they fit into the context of human figure animation. Like many

things in computer graphics, some of these ideas were originally developed in other

fields, such as robotics, computer vision, and artificial intelligence (AI), and have

been slowly making their way into the field of computer animation.

The obvious first option to motion generation is to simply “play back” previously

stored animation clips (“canned” motions). The animations may have be key-framed

by hand, or obtained by motion capture. Motion capture techniques offer a fairly

simple means of obtaining realistic-looking motion. The key idea is to record the

motion of a real human performing the desired task via magnetic sensors, optical

tracking, or other means[Mai96, BRRP97]. The motion is stored and used later to

animate a character. With only minor editing, motion capture data can provide

striking realism with little overhead. However, motion capture data alone (as well as
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all clip motions) are inflexible in the sense that the motion may often be only valid

for a limited set of situations. Such motions must often be redesigned if the relative

locations of other objects, characters, or starting conditions change even slightly.

Motion warping, blending, or signal processing algorithms[WP95, BW95, UAT95]

attempt to address this problem by offering some added flexibility through interpolat-

ing or extrapolating joint trajectories in the time domain, frequency domain, or both.

In practice however, they can usually only be applied to a fairly limited set of situa-

tions involving minor changes to the environment or starting conditions. Significant

changes typically lead to unrealistic or invalid motions.

Alternatively, flexibility can be gained by adopting kinematic models that use

exact, analytic equations to quickly generate motions in a parameterized fashion.

Forward and inverse kinematic models have been designed for synthesizing walking

motions for human figures[KB82, GM85, BC89, BTMT90]. Some kinematic models

are based on the underlying physics of walking[AG85, OK94, KB96]. While most of

these techniques assume level terrain, or a straight-line trajectory, some can handle

curved trajectories and limited variations in the environment terrain[CH99]. Noise

functions have also been proposed as a means of adding lifelike behavior to individual

motions, or blends between motions[Per95, PG96]. These methods generate motions

that exhibit varying degrees of realism.

Dynamic simulation and physically-based modeling techniques nicely handle the

problems of physical validity and applicability to arbitrary situations. Given initial

positions, velocities, forces, and dynamic properties, an object’s motion is simulated

according to natural physical laws[AG85, Bar89, MZ90, Mir96]. Dynamic simulation

techniques are well-suited for generating non-intentional motions (such as animating

falling objects, clothing, hair, smoke, wind, water, and other natural effects). While

simulations are fairly straightforward to initialize and compute, specifying the de-

sired outcome of the simulation is typically not possible. Thus, we are faced with

a classic tradeoff between physical realism and control. If the animator wants full

control (i.e. keyframing all motions), they will often sacrifice physical realism. Alter-

natively, if an animator desires physical realism, they sacrifice control. For animating

intentional motions (such as walking, jumping, or lifting), the problem is reduced
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to designing a good controller that produces the necessary forces and torques to

solve a particular task. Given the forces and torques, the simulation generates the

resulting motions. Due to the complex dynamics of a multi-jointed system, design-

ing a good controller is an extremely difficult task. Nonetheless, effective controllers

have been successfully designed (by hand) for human running, diving, and gymnastic

maneuvers[RH91, BH95, Hod96, HW98]. The advantage to designing a controller

is that it is generally reusable for a given character and behavior. However, new

controllers must be designed each time a new behavior or character morphology is

desired. There has been some work on adapting existing controllers to other char-

acter morphologies[HP97]. Still other research focuses on automatically generating

controllers via dynamic programming[dPFV90], genetic algorithms[NM93, Sim94],

control abstraction[GT95], or through training a neural network[dPF93, GTH98].

These techniques have not yet been applied to complex human models.

Spacetime constraints provide a more general mathematical framework for ad-

dressing the problem of control [IC88, WM88, LGC94, GRBC96]. Complex ani-

mations with multiple kinematic[Gle98], and dynamic[PW99] constraints have been

generated. Constraint equations imposed by the initial and final conditions, obsta-

cle boundaries, and other desired properties of the motion are solved numerically.

Related constraint-based and optimization techniques include [ZB94] and [BB98].

Other constraint-based techniques involving physically-based models are described in

[LM99] and [AN99]. The potential downside to these methods is that the large num-

ber of constraints imposed by complex obstacle-cluttered environments can sometimes

result in poor performance.

Various forms of motion planning have also been used to animate human figures.

Motion planning techniques are designed to calculate collision-free trajectories in the

presence of obstacles, and handle arbitrary environments. Motion planning algorithms

have been successfully applied to the automatic animation of goal-directed navigation

[LRDG90, HC98, BT98, Kuf98], object grasping and manipulation tasks [KKKL94a,

BT97, Ban98], and body posture interpolation [BGW+94, JBN94]. These algorithms

operate by searching the system configuration space (C-space) for a collision-free

path connecting a start configuration to a goal configuration. Though reasonable
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performance can be achieved for low degree of freedom problems (low dimensional

C-spaces), motion planning algorithms typically run slowly when faced with many

degrees of freedom. Much of this thesis focuses on presenting techniques aimed at

making motion planning practical for the real-time interactive animation of goal-

directed navigation (Chapter 3) and object manipulation tasks (Chapter 5).

Nearly all of the motion generation techniques described in the previous para-

graphs can be unified under a common framework by viewing the motion generation

problem as a problem involving two fundamental tools: model-building and search.

More specifically, solving a motion generation problem almost always involves con-

structing a suitable model and searching an appropriate space of possibilities.

Parallel to the research in solving motion generation problems for specific tasks,

there has also been work on creating suitable architectures for designing autonomous

animated characters in virtual worlds. Related research in robotics has been fo-

cused on designing control architectures for autonomous agents that operate in the

physical world[Bro85, Ark92]. For animation, the ultimate goal is the realization

of fully-autonomous, interactive, artificial human-like characters. Reactive behav-

iors applied to simple simulated creatures appeared in the graphics literature with

Reynolds’ BOIDS model[Rey87]. Tu and Terzopoulos implemented a strikingly real-

istic simulation of autonomous artificial fishes, complete with integrated simple be-

haviors, physically-based motion generation, and simulated perception[TT94]. This

work was extended to include high-level scripting and cognitive models[Fun98]. Re-

searchers at EPFL (Switzerland) have been working on realizing similar goals for

human characters. Noser, et al. proposed a navigation system for animated charac-

ters using ideas for synthetic vision originally developed by Renault, et al.[RTT90].

Their implementation also included memory and learning models based on dynamic

octrees[NRTT95]. These ideas were later expanded to include virtual tactility and

audition[NT95, TNH96]. Researchers at the University of Pennsylvania have pio-

neered efforts at human simulation. Various algorithms for controlling their Jack

human character model have been developed[JBN94, GBR+95], incorporating body

dynamics[KMB95, LM99], and high-level scripting[BWB+95, Bad97]. Other systems

include Perlin and Goldberg’s Improv software for interactive agents[PG96, Per95],
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the ALIVE project at MIT[BG95, MTBP95, Blu96], Johnson’s WavesWorld, the Oz

project at CMU[BLR94], and the work of Strassman[Str91, Str94], and Ridsdale, et

al.[RHC86]. Despite these achievements, creating autonomous animated human-like

characters that respond intelligently to task-level commands remains an elusive goal,

particularly in real-time applications.

1.5 The “Virtual Robot” Approach

Much research effort in robotics has been focused on designing control architectures for

autonomous robots that operate in the real world[Lat91, Bro85, Ark92]. Researchers

at U. Penn and EPFL have designed robotics-like architectures for animating hu-

man figures in virtual worlds [BWB+95, TDT96]. This thesis also approaches the

problem of automatically generating motion for interactive character animation from

a robotics perspective. Specifically, the problem of controlling an autonomous ani-

mated character in a virtual environment is viewed as that of controlling a virtual

robot complete with virtual sensors. A virtual robot is essentially an autonomous

software agent that senses, plans, and acts in a virtual world. User commands or

high-level scripts provide task commands, while the software automatically generates

the underlying motion to complete the task. This thesis focuses on developing prac-

tical methods for implementing a virtual robot approach to synthesizing motions for

high-level navigation and manipulation tasks for animated human figures.

1.6 Overview of the Thesis

Chapter 2 describes a framework for automatically generating animation. Chapter 3

deals with the design of an efficient motion generation strategy for goal-directed nav-

igation. Chapter 4 describes a method to efficiently simulate the visual perception

and visual memory of a character, and explains how to combine this with the plan-

ning method of Chapter 3 to obtain a perception-based navigation strategy. Chapter 5

describes a new technique for single-query path planning used to quickly synthesize
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object manipulation motions. Chapter 6 describes how the algorithms from the pre-

vious chapters can be integrated using high-level scripting to create more interesting

and complex behaviors. Finally, Chapter 7 summarizes the key concepts in this thesis

along with a concluding discussion.



Chapter 2

Character Animation Framework

2.1 Introduction

One of the fundamental problems concerning the creation of fully-autonomous ani-

mated characters is the design of an overall motion-control software framework. Our

approach is to view the problem from a robotics perspective, drawing upon the tools

and techniques used in the design and control of actual robots. Such tools include

algorithms from computational geometry, artificial intelligence, computer vision, and

dynamic control systems. The animated character is viewed as an autonomous agent

in a virtual environment (i.e. a “virtual robot”)

2.2 Autonomous Agents

Background

The concept of an autonomous agent has received a fair amount of attention in the

recent artificial intelligence literature. Indeed, autonomous agents have been touted as

representing “a new way of analysing, designing, and implementing complex software

systems”[JSW98]. Ironically, even though several international conferences are held

annually on the topic, the term agent lacks a universally accepted definition (for a

summary discussion, see [FG97]). The word autonomy is similarly difficult to define

11
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Sense

Act

Plan

Task

Figure 2.1: The control loop of a robot (physical agent).

precisely. In the context of animated characters, we will consider autonomous to

mean not requiring the continuous intervention of a user, and adopt the following

general definition as a starting point:

“An autonomous agent is a system situated within and a part of an

environment that senses that environment and acts on it, over time, in

pursuit of its own agenda and so as to effect what it senses in the future.”

Franklin & Graesser, 1996
“Is it an Agent, or just a program?”

Proc. of 3rd. Int. Workshop on Agent Theories

Physical Agents

A physical agent (what we commonly conceive of as a “robot”) is essentially a col-

lection of hardware and software that operates in the physical world. It has control

inputs (motors) that apply forces and torques on its joints, which in turn cause the

robot to move itself or other objects in it environment. The robot also comes equipped

with various kinds of sensors that provide feedback on its motion, along with infor-

mation about its surroundings. Periodically, the robot gathers input from its sensors

and formulates a plan of action based upon its current goals and internal state. The

plan of action is converted into control inputs, and the cycle repeats.

Figure 2.1 shows the control loop of a generalized physical agent. In reality, the

underlying architecture may be much more complex, with potentially several servo or
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high-level planning control loop modules executing in parallel. However, the overall

operation is essentially the same. Given a program of tasks, the robot utilizes the

cycle of sensing, planning, and acting, in an effort to accomplish its goals. If the robot

has been well-designed and programmed, it will correctly perform its given tasks.

Animated Agents

An animated agent is a software entity that exists and moves within a graphical

virtual world. We consider the problem of motion generation for an animated agent

as essentially equivalent to that of designing and controlling a virtual robot. Instead

of operating in the physical world, an animated agent operates in a simulated virtual

world, and employs a “virtual control loop”. The virtual control loop operates as

follows:

Control Inputs: The animated agent has a general set of control inputs which

define its motion. These may be values for joint variables that are specified explicitly,

or a set of forces and torques that are given as input to a physically-based simulation

of the character’s body.

Virtual Sensors: The animated agent also has a set of “virtual sensors” from which

it obtains information about the virtual environment.

Planning: Based on information provided by the virtual sensors and the agent’s

current tasks and internal state, appropriate values for its control inputs are com-

puted.

The animated agent exists entirely as a software program that runs in a simulated

virtual environment. This environment is periodically rendered on a graphic display

to produce a series of images. The viewer of the display (the user) interprets the

sequence of images as apparent motion of the objects and characters within the virtual

environment.
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In some cases, the user is capable of directly interacting with the simulation

through input devices. This distinguishes the situation from the passive act of sim-

ply viewing a television or movie screen, where the information flow is unidirectional

(from the screen to the user). The animated agent can respond to the interactions of

the user, as it goes about attempting to fulfill its agenda of tasks.

The advantages that a virtual robot has over a physical robot are numerous. While

a physical robot must contend with the problems of uncertainty and errors in sensing

and control, a virtual robot enjoys “perfect” control and sensing. As an aside, this

means that it should be easier to design an animated agent that behaves intelligently,

than a physical agent that does so. In fact, creating an intelligent autonomous an-

imated agent can be viewed as a necessary step along the way towards creating an

intelligent autonomous physical robot. If we cannot create a robot that behaves in-

telligently in simulation, how can we expect to create one in the real world? Thus,

in some sense, this research goes beyond just computer animation, but also extends

into the realm of artificial intelligence.

2.3 Motion Synthesis

Animation Variables

Let us now assume that we are faced with the problem of generating motion for

an animated character given a task command. With so many possible ways for a

character to move, how can a software program select from among the near infinite

choices available to complete a given task? The difficulty of this problem generally

increases with the complexity of the character. Human-like characters have a large

number of animation variables (avars), or degrees of freedom (DOF) that must be

specified. The variables that control the positions of the parts of the human body

model are sometimes referred to as the joint variables. These variables typically

control approximately 15 to 60 movable parts arranged hierarchically, with anywhere

between 40 to 110 degrees of freedom (e.g. the model shown in Figure 2.2). This total

does not include the detailed degrees of freedom in the face, which can number in the
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Figure 2.2: Multiple views of a human character model composed of 52 moving parts
with a total of 104 degrees of freedom

hundreds depending upon the complexity of the face model.

Mathematically, the animation variables for a character together form a param-

eter space of possible configurations or poses. From a robotics standpoint, this

space can be considered the joint space, or the configuration space (C-space) of the

character[LP83]. Any motion for the character will trace out a curve (i.e. a path) in

this multi-dimensional space as illustrated in Figure 2.3. The curve is normally a con-

tinuous function of time (i.e. a trajectory). In addition, the topology of the space may

be multiply connected so as to reflect the fact that certain variables “wrap around” in

value (e.g. global orientation). Conceptually, the fundamental goal of any motion syn-

thesis strategy is to generate a trajectory in the configuration space that accomplishes

the desired task. In addition to this basic requirement of accomplishing the task, other

important criteria may include generating smooth motion, physically-valid motion,

or simply motion that is perceived by a user as generally aesthetically-pleasing. This
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Figure 2.3: Motions for a character trace out a time-parameterized curve in the multi-
dimensional joint space.

last criterion is perhaps the most important for computer animation, yet also the

most difficult to satisfy, since “aesthetics” cannot be readily defined mathematically

or objectively.

Classes of Motion

The motions that we may wish to generate for animated characters tend to fall into

two categories:

Primary Motions: These include gross body movements (e.g. walking, jumping,

reaching), as well as facial animation (e.g. speech, expressions). Primary motions are

sometimes referred to as active or intentional motions, since they often involve joints

that are under a character’s direct control. Thus, they are driven by a character’s

willful (intentional) acts.

Secondary Motions: These include the animation of hair, skin, clothing, or mo-

tion related to environmental effects (e.g. smoke from a character’s cigarette). Sec-

ondary motions are sometimes referred to as passive or non-intentional motions, since

they involve animation variables that are typically not under a character’s direct con-

trol. Instead, the motions are an indirect result of the character’s actions (e.g. the
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wrinkling of a character’s shirt in response to a reaching motion).

The approaches taken to solving motion generation problems among these two

classes of motion will often differ. Some motion synthesis strategies are more suited

to primary motions (e.g. motion planning), while other are more readily useful for

creating secondary motions (e.g. physically-based modeling).

Facial animation is a highly-specialized topic with its own unique challenges, and

is beyond the scope of this thesis. However, as any skilled animator will testify, facial

animation is a vitally important aspect to creating believable action and drama. Thus,

any serious automatic motion generation software should support the animation of

the face.

Within the remaining chapters of this thesis, we will focus our attention on the au-

tomatic generation of gross body motions, specifically that of goal-directed navigation

(walking and running), and object grasping and manipulation.

2.4 High-Level Tasks

Specification of Task Commands

We will consider the generation of motion for human-like animated characters that

can respond to task-level commands. such as “walk to the kitchen”, “open the refrig-

erator”, “take out the milk”, “pour a glass”, “sit down at the table”, “take a drink”,

“wave hello to Mr. Smith”, or “move the teapot next to the Luxo lamp in front of

the ray-traced sphere”. Task commands may be given to a character in a number of

ways:

User-specified: Task commands generated explicitly by a user through keystrokes,

mouse clicks, voice commands, or other direct means.

Software scripts: High-level behavior programs specified via combinations of typ-

ical programming language constructs, such as if-then-else, while-do, repeat,

etc.
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Behavior simulations: Software that attempts to model the physical, mental,

or emotional state of the character, and generates task-level commands based on

its internal goals, needs, desires, or preferences. This approach may be considered

a special case of a software script approach that employs a detailed model of the

character’s internal functions or thought processes.

Given a task command (or a set of high-level goals) provided by one of the above

sources, the software must automatically generate the motion for the character to

complete the task. From here on, we shall refer to this problem as the motion synthesis

problem, and the corresponding software as the motion synthesis software.

Desired Motion

From any given task command, the input and the output are essentially of the same

form. The input given is:

1. A geometric description of the environment.

2. A kinematic and geometric description of the character (possibly including joint

limits, or physical attributes such as mass, moments of inertia, etc., for each

link).

3. The initial state of the character (the initial values for each joint parameter of

the character, and any auxiliary animation variables).

4. The goal state of the character (either directly specified or computed from the

task command).

The desired output will be a specification for each of the character’s joint variables

expressed as a continuous function of time. The simultaneous playback of all of the

joint trajectories will cause the character to move so as to accomplish the given task.
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Figure 2.4: A composite task broken down into a linear sequence of atomic tasks

Composite Tasks and Atomic Tasks

The ability to synthesize motion for a character depends upon restricting the domain

of task commands allowable. Therefore, some task commands can be considered as

basic atomic tasks such as “move to a location” or “grasp an object”. Atomic tasks

such as these have final goal states which are generally less ambiguous, or may have

default parameters specified to allow a fast and fairly straightforward computation of

the goal state.

From these atomic task primitives, one can build up more complicated composite

task commands. For example “retrieve the sword near the throne” may be decom-

posed into the following sequence of sub-tasks: “move to the throne”, “locate the

sword”, “get the sword”, and “move to the starting location” (see Figure 2.4). The

sub-task “get the sword” may be further subdivided into the tasks “reach towards the

sword handle”, “grasp the sword handle”, and “lift the sword”. Each sub-task will

generally involve an initial and a goal state which is less ambiguous, and therefore

simpler to compute. The goal state of one sub-task will become the initial state of the

subsequent sub-task. Structuring task commands based on a hierarchy of sub-tasks

allows one to perform a recursive decomposition until a linear chain of atomic task

commands is obtained. To complete the composite task, the character needs only to

complete all atomic sub-tasks in the chain.
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2.5 A Virtual Robot Architecture

Overview

If every atomic task was very narrowly and explicitly defined, one could imagine sim-

ply maintaining a vast library of pre-computed, captured, or hand-animated motions

to accomplish every possible task. The reality is that, in general, tasks cannot be so

narrowly defined, lest the set of possible tasks become infinite. Instead, atomic tasks

are typically specified at a high-level, and apply to a general class of situations, such

as “move to a location” or “grasp an object”. Thus, they are specific in one sense

(the required end result), but also very vague (how the result is achieved).

At present, no single motion synthesis strategy can adequately handle the variety

of tasks that can arise. Instead, a flexible underlying software framework is needed

to bring together different tools and techniques. As a foundation, we propose an

animated agent framework based on a virtual control loop as outlined in Section 2.2.

At regular intervals, the agent computes a motion strategy based on the current

task, its internal state, and its perceived model of the environment. The motion

is generated using a collection of fundamental software modules and data libraries

depending upon the task.

Some possible software components include a large library of “canned motions”

(clip motions), a simulated sensing module, a physically-based simulation module,

and a library of motion planning and geometric algorithms. Other potential compo-

nent modules include numerical optimization libraries, inverse kinematics routines,

and collections of biomechanical or neurophysiological data appropriate to specific

classes of character morphology (e.g. humans, dogs, birds). As an example, Chap-

ter 3 describes a goal-directed navigation strategy that combines cyclic motion capture

data, a path planning module, and a path following controller. Chapter 4 extends

this technique to incorporate a simulated sensing module. Chapter 5 describes a mo-

tion strategy for object grasping and manipulation that utilizes an inverse kinematics

module and a randomized path planner and optimizer. What is important is that dif-

ferent software modules are accessible for use by different motion synthesis strategies

depending upon the task.
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Figure 2.5: Resources available for motion synthesis.

A block diagram of the agent’s available software resources is depicted in Fig-

ure 2.5. A set of high-level goals are generated and passed to the motion synthesis

software. Utilizing some or all of the fundamental software components and data li-

braries, the resulting motion for the character is computed and passed to the graphic

display device for rendering.

Mathematical Formulation

To make things more precise, we now give a more formal formulation of the motion

synthesis problem for animated characters. The notation adopted here is loosely

based on the conventions used in [Lat91], which are often used in the robotics and

motion planning literature.

1. A character or agent is called A. If there are several characters, they are called

Ai (i = 1, 2, . . .).
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2. The 3D environment in which the characters move is denoted byW (commonly

called the workspace in robotics), and is modeled as the Euclidean space <3 (<
is the set of real numbers).

3. Each character A is a collection of p links Lj (j = 1, . . . , p) organized in a

kinematic hierarchy with cartesian frames Fj attached to each link.

4. A configuration or pose of a character is denoted by the set P = {T1, T2, . . . , Tp},
of p relative transformations for each of the links Lj as defined by the frame Fj

relative to its parent link’s frame. The base or root link transformation T1 is

defined relative to some world cartesian frame Fworld.

5. Let n denote the number of generalized coordinates or degrees of freedom (DOFs)

of A. Note that n is in general not equal to p. For example, a simplified human

arm may consist of three links (upper arm, forearm, hand) and three joints

(shoulder, elbow, wrist) but have seven DOFs (p = 3, n = 7). Here, the shoul-

der and the wrist are typically modeled as having three rotational DOFs each,

and the elbow as having one rotational DOF, yielding a total of seven DOFs.

6. A configuration of a character is denoted by q ∈ C, a vector of n real numbers

specifying values for each of the generalized coordinates.

7. Let C be the configuration space or C-space of the character A. C is a space of

dimension n.

8. Let Forward(q) be a forward kinematics function mapping values of q to a

particular pose P. Forward(q) can be used to compute the global transfor-

mation Gj of a given link frame Fj relative to the world frame Fworld.

9. Let Inverse(P) be a set of inverse kinematics (IK) algorithms which maps

a given global transformation Gj for a link frame Fj to a set Q of values for

q. Each configuration q ∈ Q, represents a valid inverse kinematic solution

(Forward(q) positions the link Lj, such that the frame Fj has a global trans-

formation of Gj relative to Fworld). Note that the set Q may possibly be infinite,

or the empty set (no valid solutions exist).
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10. The obstacles in the environment W are denoted by Bk (k = 1, 2, . . .).

11. We define the C-obstacle region CB ⊂ C as the set of all configurations q ∈ C
where one or more of the links of A intersect (are in collision) with another link

of A, any of the obstacles Bk, or any of the links of another character Ai with

Ai 6= A. We also regard configurations q ∈ C where one or more joint limits

are violated as part of the C-obstacle region CB.

12. The open subset C \ CB is denoted by Cfree and its closure by cl(Cfree), and it

represents the space of collision-free configurations in C of the character A.

13. Let τ : I 7→ C where I is an interval [t0, t1], denote a motion trajectory or

path for a character A expressed as a function of time. τ(t) = qt represents the

configuration q of A at time t, where t ∈ I.

14. A trajectory τ is said to be collision-free if τ(t) ∈ Cfree for all t ∈ I.

In response to an atomic task command for a character, we wish to compute a motion

trajectory τ that satisfies certain criteria. At a minimum, the resulting motion of A
should connect the initial configuration qinit and the goal configuration qgoal. Though

not strictly required, it is also helpful if the motion trajectory is collision-free (the

character’s geometry does not pass through objects in the environment). In other

words, τ should be computed such that:

1. τ(t0) = qinit for the start time t0.

2. τ(t1) = qgoal for some final time t1.

3. ∀t ∈ [t0, t1] , τ(t) ∈ Cfree.

The forward kinematics function Forward(q) can be used to map intermediate

configurations defined by τ to the corresponding character poses used during graphic

rendering and display. A software module that computes τ for specific task commands

is called a motion synthesis strategy.

There are several criteria which are important for the purpose of evaluating any

proposed motion synthesis strategy.
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1. Computational efficiency : Given the available computing resources, how much

time is required to compute a motion? Is this strategy practical for the desired

application?

2. Reliability and consistency : Do the algorithms always terminate? Do they find

valid solution trajectories whenever they exist? Do similar task queries yield

similar results?

3. Quality of the motion: Is the generated motion physically valid? Does it appear

natural? Does it reflect the personality or unique aspects of the character?

Overall, is it aesthetically pleasing?

These criteria (especially naturalness and aesthetics) are more difficult to define math-

ematically, and typically must be evaluated by viewing the output motions resulting

from repeated trials.

In designing a motion synthesis strategy, a variety of general-purpose software

tools (software modules) are available for use. Different modules will be more effec-

tive and useful for certain classes of task commands. In addition, typically one or

more modules can be used in combination in order to solve specific motion synthesis

problems.

The Roles of Specific Software Modules

This section describes a few of the fundamental software components identified in Fig-

ure 2.5, and briefly indicates how they might be utilized for synthesizing motion. This

is by no means an exhaustive list, but adequate for creating interesting animations

(see Chapter 6). Again, we believe that no single component can provide a general

solution to the motion synthesis problem, but rather each technique in combination

with one or more of the others can provide a viable approach to generating animation

for a given set of tasks.
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Clip Motion Libraries

Clip motions or “canned motions” are short animations that have been either key-

framed, pre-generated, or obtained via motion capture systems. Such motions can be

stored and played back very efficiently. Clip motions obtained via motion capture sys-

tems are recorded directly from a live subject, and then applied to a character for the

purposes of animation. Captured motions are often preferred due to their high level of

visual realism. This is especially true of motions which contain high-frequency com-

ponents in the data (e.g. rapid gestures), or motions in which a character’s particular

body mannerisms (style of motion) must be reproduced.

Large libraries of clip motions can potentially become a powerful resource for

animation. Eventually, animating a character in a given situation could ultimately

involve selecting a pre-recorded motion from a vast motion dictionary indexed by task

or motion characteristics. For example, there may be hundreds of walking motions

stored, from among which a character might utilize a “medium-fast walk with a slight

limp in the left leg”.

As mentioned in Chapter 1, the primary drawback to clip motions is that any

given data set can usually only be used in a very specific set of situations. For ex-

ample, consider a captured motion of a human character opening a refrigerator and

taking out a carton of milk. The motion will only appear perfect if the virtual model

of the character, the refrigerator, the carton, and their relative positions match the

actual objects used when the motion was captured. What happens if the carton

is placed on the lower shelf instead of the upper shelf? What if the refrigerator

model is made larger, or the location of the handle on the refrigerator door changes?

What happens if a bottle of orange juice is placed in front of the milk carton? Mo-

tion warping, interpolation, or spacetime constraint techniques exist that adapt clip

motions to a broader class of situations while enforcing kinematic and/or dynamic

constraints[WP95, Gle98, BB98, PW99]. However, larger deviations can often cause

such adapted motions to lose their visual realism, and hence their aesthetic quality.

Finding new techniques to adapt individual motions and connect sequences of clip

motions is an active area of research.

Captured motions are most useful for efficiently animating activities that would
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otherwise be very difficult to model in software (e.g. sitting in a chair, dancing, or

animating human speech and facial expressions). The human eye is very keen at

detecting subtle flaws in human motion animation. Thus, most software simulations

have so far been unable to match the pure visual realism obtained by simply using

captured motions. For this reason clip motions will continue to play an important

role in real-time animation systems.

Motion Planning

Motion planning algorithms were initially developed in the context of robotic sys-

tems. Such algorithms generate motion given a high-level goal and a geometric

description of the objects involved[Lat91]. In the context of computer animation,

motion planning can be used to effectively compute primary (intentional) motions.

Examples include computing collision-free motions to accomplish high-level naviga-

tion or object manipulation tasks[KKKL94a, Ban98, Kuf98], or connecting different

body configurations[CB92, BMT97]. Motion planning is particularly suited to such

tasks, since there is a near infinite number of possible goal locations and obstacle

arrangements in the environment. This combinatorial explosion of possibilities cur-

rently prohibits the direct use of pre-recorded motion sequences. Instead, flexible

and efficient planning algorithms can be designed to compute collision-free motions

for specific categories of tasks commands that apply to a broader set of situations

(see Chapter 3 and Chapter 5).

However, motion planning is less useful for tasks in which few obstacles to motion

exist and/or aesthetics are of paramount importance (such as facial animation). As an

example, consider the task of animating a human figure sitting down on a chair. This

task results in a highly-specialized class of motions involving a direct interaction of the

entire body with an environment object (in this case, a chair). Grasping the armrests

during the sitting motion and adjusting the body posture afterwards are subtleties

of motion that are important for naturalness, and are unlikely to be obtained by

directly searching the body configuration space. In this case, using motions derived

from captured data can potentially yield much better results, when compared with

attempts to construct complicated kinematic or physically-based models, or apply
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motion planning techniques.

The primary challenge when using motion planning to generate animation is to de-

sign efficient algorithms that achieve visual realism. Aesthetics of motion are of little

concern for robots, but are vitally important for animated characters. The computed

motion must look natural and realistic. It may be possible to encode aesthetics as

search criteria to use during planning, or to perform post-processing on the planned

motion. For example, the naturalness and realism of a planned motion could arise

from an underlying physically-based model that guides the search. Alternatively,

search criteria might be ultimately derived from clip motion libraries that represent

a particular “style” of motion.

Physically-Based Simulation

All motions in the physical world are driven by the laws of physics. Motions in virtual

worlds typically aspire to give the appearance that they are also driven by the laws of

physics. Graphical models simulate the visual appearance of objects, while physical

models simulate their behavior in the physical world.

Animation generated using physically-based models (dynamic simulation) has the

potential advantage of exhibiting a very high level of realism. Given a set of initial

conditions and force/torque models, the motions of objects and their interactions can

be calculated precisely. However, since the underlying motion is dictated by physics, it

is difficult to control the simulation at a task-level. Spacetime constraint optimization

techniques can alleviate some of these difficulties[IC88, WM88, LGC94], but at a

computational cost that is largely prohibitive for interactive animation systems.

Physically-based techniques are very well-suited for generating secondary motions.

Examples include the animation of rigid objects[AG85, Bar89, Mir96], hair, skin,

and clothing[TF88, VCNT95, BW98], or environmental effects (wind, water, smoke,

fire)[SOH99]. Animating special effects whose motion derives primarily from the force

of gravity (e.g. a human character falling from a bicycle or slipping on a banana peel)

are ideal situations where physically-based simulations can be applied.

However, it is more difficult to apply such techniques to the animation of primary

(intentional) motions, using a physically-based model of a character. For example,
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consider tasks in which the dynamics of the underlying physical system (e.g. the hu-

man body) plays a significant role in the overall quality of the motion (e.g walking,

dancing, running, jumping, kicking, etc). Fundamentally, the key difficulty lies in

computing the required controls necessary to achieve a particular task. Some com-

plex controllers have been carefully hand-designed for animating human walking, run-

ning, and athletic maneuvers[MZ90, RH91, Hod96, HW98]. Other researchers have

proposed automatically synthesizing controllers via dynamic programming[dPFV90],

genetic algorithms[NM93, Sim94], control abstraction[GT95], or through training a

neural network[dPF93, GTH98].

Deriving the necessary controls to animate a physically-based model may be an-

other area in which both motion planning and libraries of captured motions might

be useful. Motion planning problems that involve dynamic constraints (kinodynamic

planning) can be formulated as a search among the space of available controls to move

a physical system from one state to another[DXCR93, BL93, Fer96, LK99, LM99].

Alternatively, one can envision using the “inverse dynamics” of a given physically-

based model in order to compute the set of controls necessary to achieve a particular

captured motion. Ultimately, libraries of “canned motions” may eventually be re-

placed by libraries of “canned sets of controls” that can be used in combination with

a physically-based model of a character.

Clearly, as the computational resources available to desktop systems grows, in-

creasingly sophisticated physically-based models can be used in a variety of ways in

order to generate increasingly realistic animations.

Simulated Sensing

Creating an autonomous animated agent with believable behavior in an interactive

virtual environment will ultimately require some kind of simulated sensing (see Chap-

ter 4). This can include one or more of simulated visual, aural, olfactory, or tactile

sensing. The basic idea is to more realistically model the flow of information from the

virtual environment to the character. The character should act and react according

to what it perceives.

Sensory information can be encoded at both a low level and a high level and
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utilized by high-level decision-making processes of the animated agent. Examples of

sensory encodings include “all objects that are currently visible”, “all other characters

that are currently nearby”, or “sounds that can be currently heard”. Because ani-

mated agents operate in virtual environments, they can potentially avoid many of the

problems that physical agents (robots) have when dealing with sensory information

(e.g. noisy data, conflicting data, etc). However, in the interests of realism, it may

not always be desirable to equip animated agents with perfect sensors. For example,

real humans can become confused in rooms with mirrors, or mistake a tiger-skin for a

real tiger. In the same way that some computer-generated images of real-life objects

are sometimes criticized as being “too perfect”, an animated agent that never makes

mistakes might also be criticized as being unrealistic.

The output of the agent’s sensors can be used to incrementally build a perceived

model of the world, with which the agent utilizes to plan its motion. This completes

the cycle of the virtual control loop. Note that the agent’s perceived model of the

virtual world need not coincide with the actual model. This means that agents can

sometimes make poor judgments, or be forced to make decisions based on incomplete

information (which is what happens to humans in real life).
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Chapter 3

Goal-Directed Navigation

3.1 Introduction

This chapter combines several of the software component modules discussed in Chap-

ter 2 to design a motion generation strategy for goal-directed navigation. Navigation is

an important task that frequently arises in the context of animated characters. Nav-

igation task commands require that a character move from one location to another

within a virtual environment filled with obstacles.

Consider the case of an animated human character given the task of moving from

a starting location to a goal location in a flat-terrain virtual environment (such as

the virtual office in Figure 3.1). An acceptable navigation algorithm should produce

a set of natural-looking motions to accomplish the task while avoiding obstacles and

other characters in the environment.

Related Work

The problem of goal-directed navigation has received much attention in the robotics

literature, as it is fundamental to designing practical mobile robots. In particular,

the objective has been the design and implementation of task-level motion planning

algorithms for real-world robotic systems[Lat91]. Variations on an assortment of

robot navigation techniques have been used for the purposes of animation.

31
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Figure 3.1: A human character navigating in a virtual office.

Local approaches use sensors and reactive behaviors to avoid obstacles in the im-

mediate vicinity[Bro85, Ark98]. Some popular techniques utilize artificial potential

fields for obstacle avoidance[Kha86]. Reynolds used a kind of potential field to sim-

ulate flocking and schooling behaviors[Rey87], and developed an array of reactive

controllers for creating interesting autonomous behaviors[Rey99]. Tu and Terzopou-

los used similar reactive behaviors for their artificial fish[TT94]. Reich, et al used

potential fields for animating navigation for human characters[RBKB94]. Blumberg

and Galyean used a reactive controller along with simulated perception for their

artificial dog, in which motion energy of the visual field is used as a heuristic for

avoiding obstacles[BG95]. Van de Panne proposed a footprint-based motion gener-

ation strategy for human figures along a pre-determined global path[vdP97]. Foot-

prints that intersect obstacles are perturbed locally until a collision-free position is
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found. Noser, et al. used potential fields for obstacle avoidance for human characters,

along with an integrated simulated visual perception system for exploring unknown

environments[NRTT95].

The advantages to potential fields are that they are efficient, simple to compute,

and can be used for both known and unknown environments. The primary disadvan-

tage is their tendency to become trapped in local minima induced by the artificial

potential field. In general, all local, behavior-based approaches can become trapped

in behavior loops, resulting in the inability to find a path to the goal even if one exists.

Global approaches to navigation consider global information to form a plan of

action, as opposed to simply reacting to local information. Global path planning

techniques using a configuration-space approach have been extensively studied in

robotics [LP83, Lat91]. For navigation in 2D, the configuration space can often be

explicitly represented and complete algorithms are known[SS83, Can88]. Most path

planning methods operate by first building a convenient representation of the free

space (e.g. a graph), and then searching that representation for a path.

Some of these planning methods have been adopted for the purposes of anima-

tion. Lengyel, et al used rasterizing computer graphics hardware for fast motion

planning[LRDG90]. Bandi and Thalmann implemented a global path planning ap-

proach for human navigation using space discretization that can handle environments

with stairs and ramps[BT98]. Kuffner developed a similar approach for navigation

on a flat-terrain suitable for interactive applications[Kuf98]. Hsu and Cohen used

an exact cell-decomposition path planner for human figure navigation on an uneven

terrain[HC98].

The advantages to global approaches to navigation is their ability to find paths

even in complex environments, and (for some methods) their ability to always re-

turn optimal paths to the goal (if one exists). The primary disadvantages are that

they typically assume that the complete environment is known in advance, and they

generally involve more computation than local approaches.
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3.2 Navigation using Planning and Control

Overview

The navigation strategy presented in this chapter is a global approach based on

[Kuf98], and is similar in spirit to the work of Bandi[Ban98]. Our strategy will

be to divide the computation into two phases: path planning and path following.

The planning phase computes a collision-free path to the goal location, while the

path following phase synthesizes the character’s motion along the computed path.

Navigation goals are specified at the task level, and the locomotion animation is

created using cyclic motion capture data driven by a path-following controller that

tracks the computed path. Although the planner presented here is limited to finding

navigation paths that lie in a plane, the algorithm can potentially be modified to

compute paths that include vertical motions of the character (see Section 3.8).

The speed of the navigation planner enables it to be used effectively in interactive

environments where obstacles and other characters change position unpredictably.

Chapter 4 extends the navigation algorithm to unknown environments by simulating

the visual perception of a character. This is used to provide a feedback loop to the

overall navigation strategy, as the character reacts in response to obstacles in its

visual field. A record of perceived objects and their locations is kept as the character

explores an unknown environment, allowing the character to construct motion plans

based solely on its own internal model of the virtual world. The internal model is

updated as new sensory information arrives, and an updated motion plan is computed

if necessary. The resulting animation can be generated at interactive rates and looks

fairly realistic. The overall data flow for the navigation strategy is illustrated in

Figure 3.2.

Limiting the Degrees of Freedom

The theory and analysis of path planning algorithms is fairly well-developed in the

robotics literature, and is not discussed in detail here. For a broad background in

motion planning, readers are referred to [Lat91]. For any path planning technique,
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Figure 3.2: Data flow for the navigation strategy

it is important to minimize the number of degrees of freedom (DOFs), since the

time complexity of known algorithms grows exponentially with the dimension of the

C-space[Rei79]. For human locomotion (e.g. walking, running, crawling), the most

important joints that must be animated are the major appendages of the body (i.e. the

torso, legs, and arms). The joint variables in the face, toes, and fingers of the hands

typically play a minimal role. Figure 3.3 illustrates the major joints of a human

figure used for navigation and their hierarchical arrangement. Motion capture data

used for animating the gross body motions of human figures almost invariably specifies

trajectories for these degrees of freedom.

For fast motion synthesis, we want to only consider planning for the degrees of

freedom that affect the overall global motion of the links of a character (i.e. the root

joint DOFs). For the joint hierarchies we used, each of the 6 degrees of freedom of

the Hip joint falls into this category. The idea is to compute motion plans for these
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Hips(6)

  LeftHip(3)

    LeftKnee(1)

      LeftAnkle(3)

  RightHip(3)

    RightKnee(1)

      RightAnkle(3)

  Chest(3)

    LeftShoulder(3)

      LeftElbow(1)

        LeftWrist(3)

    RightShoulder(3)

      RightElbow(1)

        RightWrist(3)

    Neck(3)

      Head(3)

Figure 3.3: The major joints in the kinematic hierarchy used for locomotion are
shown, along with the number of DOF for each joint.

DOFs (which we shall refer to as active DOFs or active joints), while the remaining

joints (which we refer to as passive DOFs or passive joints) are either held fixed,

or controlled by a simple algorithm. For our navigation strategy, passive joints are

animated by cycling through a clip motion locomotion gait. However, passive joints

could also potentially be driven by the active joints with their motion computed using

a simple mathematical relation or even a sophisticated physically-based simulation

(e.g. the motion of a character’s hair in response to the gross motions of the head).

Using a Bounding Volume

Moreover, we can further reduce the dimensionality (and hence the efficiency) of the

planning phase by considering only a subset of the active joints when possible. For

instance, if we assume that the character navigates on a flat surface, we can omit one

of the active translational DOFs (the height of the Hip joint above the surface), as

well as two of the active rotational DOFs (by assuming the figure’s main axis remains

aligned with the normal to the surface). Suppose all of the passive DOFs and the

omitted active DOFs are driven by a controller that plays back a simple locomotion

gait derived from motion capture data. By approximating the character by a suitable
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Bounding Cylinder

Figure 3.4: The character’s geometry is bounded by an appropriate cylinder.

bounding volume (such as a cylinder), that bounds the extremes of the character’s

motion during a single cycle of the locomotion gait, we have effectively reduced the

navigation planning problem to the 3-dimensional problem of planning the motion

for an oriented disc moving on a plane. Figure 3.4 shows one of the characters used

in our experiments along with its bounding cylinder.

As previously mentioned, for character navigation on flat-terrain, the most im-

portant DOFs are the position and orientation (x, y, θ) of the base of the character

on the walking surface. We can reduce the dimensionality further still by having the

the orientation (forward-facing direction) of the character computed by a controller

during the path following phase (see Section 3.6). Thus, we need only to consider the

position (x, y) of the base of the character during the planning phase. This means

that path planning for flat-terrain navigation can be reduced to planning collision-free

paths for a circular disk in 2D.
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3.3 Algorithm Outline

There are four basic parts to the navigation algorithm. Each step is briefly described

below, and then discussed in detail in subsequent sections:

1. Initialization: A general 3D description of the environment and characters

suitable for rendering is provided, along with a goal location. Motion capture

data for a single cycle of a locomotion gait along a straight line is pre-processed

as described in Section 3.4.

2. Projection: The planning phase begins by projecting all obstacle geometry

within the vertical extents (the height range) of the character to a discretized

2D bitmap grid. The projected obstacles are “grown” by a character’s bounding

radius, so that the grid represents an approximate map of the free space.

3. Path Search: The embedded graph defined by the grid from the previous

step is searched directly for a collision-free path using any standard dynamic

programming technique (e.g. Dijkstra’s algorithm, or A* with some appropri-

ate heuristic function). In this case, we use a modified version of Dijkstra’s

algorithm optimized for searching square grids. If planning is successful, the

complete path is sent to the path following phase. Otherwise, the controller is

notified that no path exists.

4. Path Following: Cyclic motion capture data along with a PD controller on

the position and velocity is used to generate the final motion for the character as

it tracks the computed path. If no path exists, an appropriate stopping motion

or waiting behavior is performed.

The path planning method adopted here is one instance of an approximate cell

decomposition method[Lat91]. The C-space (in this case, the walking surface) is

discretized into a fine regular grid of cells. All obstacles are projected onto the grid

and “grown” as detailed in Section 3.5. Hence, the grid approximately captures the

free regions of the search space at the given grid resolution, and can ultimately be

used for fast collision checking.
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3.4 Initialization

Environment Representation

The navigation strategy imposes no restrictions on the makeup of the environment

obstacles, so long as it is possible to project their geometry to a plane. Most virtual

environments currently used in practice contain obstacles comprised of a collection of

polygons suitable for rendering. The polygonal models may be arbitrarily complex,

with holes, discontinuities, and self-intersections (i.e. a “polygon soup”).

The walking surface is assumed to be flat in the implementation described here.

It may be possible to remove this restriction by first mapping an uneven surface with

obstacles onto a plane prior to projection. However, this has currently not been im-

plemented. The walking surface is also assumed to be finite. It should have maximal

extents that are of reasonable size compared to the dimensions of the character. This

restriction ensures that the resolution of the grid is not too coarse, while the number

of cells is kept to a minimum. We prefer to have fewer cells, since this affects the

speed of the path search (see Section 3.5). A useful rule of thumb is to restrict the

relative size of a bitmap cell to be no larger than the character’s bounding radius.

Since the number of cells grows quadratically with the size of the walking surface

(i.e doubling the maximal extents quadruples the number of cells), it helps to have

smaller, finite-sized virtual environments. For indoor scenes, these constraints typi-

cally pose little difficulty. For environments with large open expanses (e.g. outdoor

environments), additional data structures are needed to manage the free space and

limit the fine-grained path searching to a local area. Possible solutions to this prob-

lem involve a number of design decisions and tradeoffs that typically depend upon

the application (see the paragraph on Large Environments in Section 3.8).

The Goal Location

The goal location is specified either directly by the user, or derived from a high-level

script. It determines a location in the virtual environment relative to the character’s

starting location, that the character is commanded to navigate towards.
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Although the goal location will typically map to a single cell in the grid, it should

be noted that the goal location need not occupy a mere single cell. Rather, it could

represent a collection of several cells (e.g. the interior cells of a given room if the

task command doesn’t specify a precise location within the room). Moreover, the

collection of cells can be disjoint. For example, if the task command is to exit a

building, goal locations can be specified at multiple exit doors and the planner will

return a path to the nearest one.

Preparing the Motion Capture Data

As a one-time pre-processing step, the motion capture data to be used as the naviga-

tion gait is prepared for the path following phase. Here we assume that the original

motion capture data is cyclic (the motion of the final frame smoothly connects to the

first frame), and roughly follows a straight line in the global (world) frame. To begin,

the transformation of the root joint (for example, the Hip joint) for each data frame

is factored into two parts:

1. The transformation of a base point (the point of projection of the origin of the

root joint to the walking surface) moving in a straight line at a constant speed

throughout the duration of the cycle.

2. The relative transformation of the root joint with respect to the moving base

point.

Figure 3.5 illustrates the decomposition. The first transformation relates the world

frame to the base frame, while the second transformation represents the relative offset

of the hip frame to the moving base frame. Factoring the motion data in this way

is commonly known as computing the motion with respect to the treadmill frame of

reference. The name derives from the fact that if the resulting motion is played back

while holding the base point fixed, it will appear as if the character is moving on a

treadmill.
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Figure 3.5: Computing the “treadmill” frame of reference.

The primary reason for computing this treadmill frame decomposition is to allow

us to apply the motion capture data to an arbitrary curve much more easily. Tra-

ditionally, motion capture data comes in a format that specifies the transformation

of the root joint relative to some fixed global frame. Instead of trying to control the

root joint directly to follow a computed path, we can control the base point, which

by construction travels in a straight line and at a constant speed throughout the

duration of the motion cycle.

The trajectory of the base point is computed by first projecting the origin of

the root joint onto the walking surface for both the first frame and the last frame

of the motion cycle. The base point should move in the direction corresponding to

the translational difference between these two projected points. The total distance

traveled by the base point should be the length of this translational difference. The

velocity of the base point is simply this distance divided by the time elapsed during

playback of the motion cycle. The base point is the point to which we will map the
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center of our oriented disc model for path following. The direction of motion of the

base point corresponds to the forward-facing direction of the disc model.

The velocity of the base point is the canonical average velocity V of the root joint

over the duration of the motion. If the base point is made to move along a straight line

at this velocity, the motion capture data will appear as it does in its raw form. Since

we will be controlling the base point for path following, it will move along curved

paths, and at differing velocities. In order to improve the appearance of the motion

for velocities other than the average velocity, we can incorporate other motion capture

data sets taken at different walking or running speeds. An alternative to this, is to pre-

compute a table of interpolation factors for the joint rotations, indexed by velocity.

Smaller base point velocities will result in smaller joint rotations. For example, for

a basic walk cycle, the interpolation factors can be pre-selected for each base point

velocity such that sliding of the character’s feet along the walking surface is minimized.

This simple interpolation method is used in the implementation described here, and

results in fairly reasonable motions for transitioning between a standing position to a

full-speed walk, and in coming to a stop at the end of a path. A more sophisticated

method might utilize inverse kinematics (IK) or constraint-based techniques[Gle98]

to prevent the feet of the character from sliding on the walking surface.

3.5 Planning

The path planning phase consists of projecting the obstacles to a grid to obtain a

“map” of the walking surface, and then searching the resulting embedded graph for a

free path. Performing these two steps of projection and search, we will refer to as one

planning cycle. For static environments (i.e. non-moving obstacles), the projection

step needs only to be performed once. The resulting grid can then be reused to search

for a new path if the start or goal locations change. For dynamic environments, where

the locations of other characters or objects in the environment can change without

warning, a complete planning cycle must be performed whenever objects move. This

is due to the fact that object motions may invalidate the optimality or the collision-

free nature of the current path being followed, and necessitate re-planning.
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Obstacle Projection

All obstacle geometry within the character’s height range [zmin, zmax] is projected

orthographically onto the grid. The height range limitation assures that only obstacle

geometry that potentially impedes the motion of the character is projected. Cells in

the grid are marked as either FREE or NOT-FREE, depending upon whether or not

the cell contains any obstacle geometry. The resulting 2D bitmap B now represents

an occupancy grid of all obstacles within the character’s height range projected at

their current locations onto the walking surface. Note that a binary bitmap such

as this does not distinguish between small, low obstacles (that could potentially be

stepped on or over), large columns (that must be circumvented), and overhangs (which

the character could duck under). However, the overall navigation strategy could

potentially be extended to include such kinds of motion (see Section 3.8).

In the robotics literature, a technique of growing the obstacles and shrinking

the robot was introduced by Udupa[Udu77] and later refined by Lozano-Perez and

Wesley[LPW79]. We adopt a similar approach here. Cells in B marked as NOT-FREE

are “grown” by R, the radius of a cylinder that conservatively bounds the character’s

geometry. This is done by marking all neighboring cells within a circle of radius R from

each original NOT-FREE cell as NOT-FREE. In effect, this operation computes the

Minkowski difference of the projected obstacles and the character’s bounding cylinder,

thus reducing the problem of planning for a circular disc, into planning for a point

object. To check whether or not a disc whose center is located at (x, y) intersects

any obstacles, we can simply test whether B(x, y), the cell in B containing the point

(x, y) is marked FREE.

For relatively simple environments with few total polygons, software rasterization

algorithms are appropriate for computing the 2D projection. For large environments

with tens of thousands of polygons, the obstacle projection operation can be per-

formed much faster using rasterizing computer graphics hardware[LRDG90, Ban98].

Here, the rendering pipeline enables us to quickly generate the bitmap needed for fast

point collision checking. An orthographic camera is positioned above the scene point-

ing down along the negative normal direction of the walking surface with the clipping

planes set to the vertical extents of the character’s geometry. The near clipping plane
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of the camera is set to correspond to the maximum vertical height of the character’s

geometry, while the far clipping plane is set to be slightly above the walking surface.

The other dimensions of the orthographic view volume are set to enclose the furthest

extents of the walking surface at the current grid resolution as depicted in Figure 3.6.

All geometry within the view volume is projected (rendered) into either the back

buffer or an offscreen bitmap via the graphics hardware.

Further performance improvements are possible. Since we are only concerned with

whether or not any obstacle geometry maps to each pixel location, we can effectively

ignore the pixel color and depth value1. Thus, we can turn off all lighting effects

and depth comparisons, and simply render in wireframe all obstacle geometry in a

uniform color against a default background color.

Under most reasonable graphics hardware systems, these simplifications will sig-

nificantly speed up rendering performance. However, we can do even better. If the

graphics hardware supports variable line-widths and point-sizes, we can perform the

obstacle growth at no additional computational cost! We simply set the line-width

and point-size rendering style to correspond to the projected pixel length of R, the

radius of the character’s bounding cylinder. In this way, we can efficiently perform

both obstacle projection and growth simultaneously.

Path Search

The bitmap B is essentially an approximate map of the occupied and free regions

in the environment. Assume that the goal location G = (gx, gy) and the starting

location S = (sx, sy) in the bitmap are both FREE. Let us consider B as an embedded

graph of cells, each connected to its neighboring cells. For a bitmap (a square grid)

each interior cell has 8 neighboring cells, while border and corner cells have 5 and 3

neighboring cells respectively. Each pixel in the bitmap corresponds to a node in the

graph, and edges are placed between pairs of neighboring pixels that are both FREE.

By searching the graph defined by B, we can conservatively determine whether or not

a collision-free path exists from the start location to the goal location at the current

1One possible use for the depth value could be to extend the navigation algorithm to handle
irregular terrain, or the ability of the character to step over low obstacles (see Section 3.8).
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Figure 3.6: The view volumes resulting from an overhead orthographic camera. The
near and far clipping planes of the camera are defined according to the vertical extents
of the character geometry. All obstacle geometry contained within the view volume
is rasterized on a 2D grid for planning. The resulting bitmap is searched directly for
a collision-free path connecting the character’s starting position to the goal.
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GOALSTART

Figure 3.7: Searching an embedded graph defined by a grid

grid resolution. Figure 3.7 shows a small example of an embedded graph defined by

a bitmap grid.

If we assign a relative cost to each arc between cells, we can search for a path

that connects S and G while minimizing our cost function. Here, we use a relative

measure of the Euclidean distance between adjacent cells as our cost. Arcs between

directly adjacent cells are assigned a relative cost of 1, while diagonally-adjacent cells

are assigned a relative cost of
√

2 ≈ 1.4. Our task has been effectively reduced to

that of searching for a path between two nodes in a weighted graph.

Searching a Weighted Graph

Any number of standard dynamic programming techniques may be used to search the

graph defined by B. Some possibilities include Dijkstra’s algorithm, best-first search

(BFS), and A*. For a detailed review of graph searching techniques and analysis,

see [KK88, Mit98]. However, most path-finding algorithms are written for arbitrary

graphs rather than regular grids. We prefer to use something that can take advantage

of the grid nature of the graph.

With this goal in mind, we implemented a modified version of Dijkstra’s algorithm

that has been optimized for finding paths on square grids. In particular, it reduces

the overall total number of expected neighboring node expansions. The same tech-

nique can be applied to optimize the A* algorithm, though the size of the grids used

in our experiments were not large enough to justify the extra cost of computing a
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Figure 3.8: Paths which form angles less than 90 degrees can always be shortened.

heuristic function (see Section 3.8). Fixed-point math is used in calculating the dis-

tance and cost computations, resulting in a planner that runs almost entirely using

fast integer arithmetic. In addition, the implementation makes extensive use of inline

functions and uses an array-based indexed priority queue data structure for improved

performance.

This search strategy will always return a path containing a list of FREE cells

between S and G if one exists at the given grid resolution. Moreover, since a relative

measure of the Euclidean distance is used as the single-step cost between cells during

the search, the returned path will be of minimal length (for any 8-neighbor path at

the given grid resolution). From the list of free cells connecting S to G, a final path

P is constructed by linking in sequence the line segments connecting the centers of

adjacent cells along the path.

Fast Planning on a Square Grid

In this section, we show how to speed up path searching on a regular 2D grid with edge

weights assigned as described earlier. The basic idea is to modify Dijkstra’s algorithm

so as to reduce the overall total number of expected neighboring node expansions by

limiting the number of neighboring cells inserted into the priority queue. We can do

so by exploiting the geometry of optimal 8-neighbor paths on a square grid.

The minimum angle an optimal path on a square grid can ever form with itself is 90

degrees. This fact is apparent by noting that any 8-neighbor path that forms an angle

smaller than 90 degrees can be made shorter by “cutting corners” (see Figure 3.8).

Because of this, we can effectively limit the number of neighboring node expansions

by ignoring those cells whose inclusion would produce a path with an angle less than
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Figure 3.9: Reducing the number of neighbor node expansions.

90 degrees. By keeping track of which direction a given node was expanded from,

we can reduce the number of of potential neighbor node expansions from 8 to 5 (see

Figure 3.9). For example, suppose we extract a node from the queue that was inserted

when its neighbor node to the “west” was expanded (the left portion of Figure 3.9).

Obviously, there is no need to consider the node to the west when the current node

is expanded. In addition, there is no need to consider the neighbor nodes to the

northwest and southwest. This is because the edges connecting them to the current

node cannot be part of an optimal path that includes the edge between the current

node and its western neighbor.

Properties of Computed Paths

There are several desirable properties of the paths computed by the search phase of

the planner:

1. Optimality: Paths generated by the planner are optimal according to the

graph metric used. An optimal path may not be unique, as there may be

several optimal paths with an equivalent cost. The planner is guaranteed to

return one of them.

2. No Crossings: This property derives naturally from path optimality. Com-

puted paths will never cross themselves, otherwise any path loops could simply

be eliminated to yield a lower-cost path.

3. Bounded Curvature: The computed paths have a bounded curvature due to

the geometry of optimal paths on a square grid (i.e. the minimum angle a path

can ever form with itself is 90 degrees).
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Complexity Analysis

If planning is successful, the complete path is sent to the path following controller.

Otherwise, the controller is notified that no path exists. The planner is resolution-

complete, meaning that it is guaranteed to find a collision-free path from S to G if

one exists at the current grid resolution, and otherwise report failure[Lat91].

The running time of the obstacle projection step is proportional to the number

and geometric complexity of the obstacles. Searching for a path in the bitmap using

Dijkstra’s algorithm runs in quadratic time with respect to the number of free cells in

the grid. Extracting the path (if one exists) runs in time proportional to the length

of the path. Overall, this planning strategy can be implemented very efficiently and

robustly even for complex environments. Note that the search phase of the planner

may run faster for complex, obstacle-cluttered environments, since such environments

result in fewer free cells to search.

3.6 Path Following

Simply computing a collision free path in the environment is not enough to produce

realistic animation. The navigation system described here uses cyclic motion capture

data applied to the joints of the character, plus a simple low-level proportional deriva-

tive (PD) controller to follow the computed path. The quality of the final motion

arises primarily from the motion capture data, but there are other alternatives that

could be used for path following. So-called “footstep”-driven animation systems could

be applied to place the feet at points nearby the computed path, along with real-time

inverse kinematics (IK) to hold them in place[BC89, BTMT90, vdP97]. As computer

processing power increases, physically-based models of the character dynamics along

with complex controllers such as the one presented in [Hod96] could also potentially

be used to simulate locomotion gaits along the path. For the purposes of these exper-

iments, applying cyclic motion capture data proved to be a fast and simple method

of obtaining satisfactory motion.

Although the path planning and following concept generally applies to many types
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of characters and motions, we will concentrate on generating walking or running

motions for a human-like biped. We would like the character’s motion to be smooth

and continuous, natural-looking, and follow the computed path as closely as possible.

Though many kinds of path following techniques could potentially be used, the one

described here was chosen for its simplicity and efficiency.

Mathematical Model

Human figure walking or running is essentially a quasi-nonholonomic system, since

the typical turning radius is usually subject to some minimum value depending upon

the velocity. Of course, a person can turn in place, but generally, this will only happen

at the beginning or end of a path following procedure, not in the middle of a path.

Humans tend to only walk forward, not backward or sideways (no direction reversals

during path following).

With this in mind, the path following phase is modeled as one involving an oriented

disc smoothly tracking a geometric path in the plane. The disc center corresponds

to the projected point at the base of the character’s geometry, and the orientation

of the disc corresponds to the character’s forward-facing direction as illustrated in

Figure 3.10. The linear velocity of the disc is constrained to always lie along the

forward-facing direction. This corresponds to the character’s ability to walk or run

forward. Turning is modeled by considering the disc’s rotational velocity about its

center.

A discrete time simulation of the following state variables is used:

pt position (xt,yt) of the disc center

θt orientation (forward-facing direction)

vt linear speed along the direction of θt

ωt angular speed about pt

The tuple (pt, θt, vt, ωt) represents the simulated state of the character at time t. At



3.6. PATH FOLLOWING 51

Forward−facing
direction

ω t

t
p

vt

θt

���������������
���������������
���������������
���������������
���������������

Figure 3.10: The controller model considers the character’s motion as that of an
oriented disc in the plane. The center of the disc corresponds to the projection of the
origin of the root joint of the figure onto the walking surface.

each time step, any combination of the following two controls may be applied:

at linear acceleration along the direction of θt

αt angular acceleration about pt

These controls model the four basic fundamental actions for our character: (speed

up, slow down, turn left, turn right). Speeding up and slowing down are represented

by positive and negative values of at respectively. Similarly, positive values of αt

correspond to left turns, while negative values correspond to right turns. Section 3.6

explains how these controls are calculated at each time step.

Once the controls at and αt have been specified, the state variables are integrated

forward discretely by the time step ∆t. In these experiments, simple fixed-step Euler

integration was used, but more sophisticated integration methods may be used if

desired. For Euler integration, the state propagation equations can be approximated
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by:

xt+∆t = xt + (vt cos θt)∆t

yt+∆t = yt + (vt sin θt)∆t

θt+∆t = θt + ωt∆t

vt+∆t = vt + at∆t

ωt+∆t = ωt + αt∆t

The simulation proceeds in this fashion iteratively. As long as the values of the

controls are reasonable relative to the size of the time step ∆t, the motion will be

smooth and continuous.

Calculating the Controls

In this section, we describe a simple method for computing the two control variables,

at and αt for our character during each time step of the simulation. The method is

based on proportional derivative (PD) control. Given the current state of the system

(pt, θt, vt, ωt), a desired state (p̂t, θ̂t, v̂t, ω̂t) is calculated. The controls at and αt are

then computed to move the system towards the desired state.

The computation proceeds as follows: Given a path P computed by the planning

phase, a desired position along the path p̂t is calculated relative to the current position

pt. The desired position is typically set to be slightly ahead of the point on the path

that is closest to pt, as this tends to smooth out any sharp corners on the path. Next,

the desired orientation θ̂t is computed so as to face the character towards the desired

position p̂t. The desired angular speed ω̂t is set proportional to the difference (error)

between the current orientation θt and the desired orientation θ̂t. The desired linear

speed v̂t has three alternatives:

1. If the error in orientation is small, v̂t is simply set to be the canonical average

velocity V of the motion capture cycle.

2. If the error in orientation is large, the character is facing the wrong direction,

so the speed is set to be some small non-zero value to force the character to

slow down and turn around.
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3. If the character is nearing the end of the path (the goal location), v̂t is calcu-

lated proportional to the difference between the current position and the goal

location. This will cause the character to slow down and ultimately stop at the

goal. In order to guarantee that the character eventually comes to a stop and

doesn’t overshoot the goal, it is useful to define a goal region (a small epsilon-

neighborhood around the goal location). As soon as pt comes within a distance

ε of the goal location, v̂t is automatically set to zero (forcing the character to

halt).

After v̂t is obtained, the controls at and αt are calculated. The linear acceleration

at is set proportional to the difference between the current and desired linear speed,

while the angular acceleration αt is set proportional to the difference between the

current and desired angular speed. The state of the system is integrated forward by

a discrete time step ∆t, and the entire process is repeated for the next time step.

All of the calculations involving proportional derivative terms above require the

following gains to be specified:

kp position gain

kθ orientation gain

kv linear speed gain

kω angular speed gain

The gains represent how quickly errors (differences between the current and the

desired) are resolved. Since a discrete time step is being used, some care must be

taken when setting the gains. Gains set too high will cause oscillations (an under-

damped system), while gains set too low will fail to correct errors (an overdamped

system). Setting the gains properly will result in a critically-damped system, that

asymptotically corrects errors without overshoot. For more detailed information and

analysis, see any textbook on feedback control, for example [Isi95].

As long as the gains are set to reasonable values relative to the size of the time

step ∆t, the resulting motion will be smooth and continuous. The controller will
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TRACKING DETAIL

Figure 3.11: Base point tracking performance for path following.

exhibit better tracking performance (less deviation from the planned path) for loco-

motion gaits with lower canonical speeds (i.e. lower values of V ). Since the paths

computed by the planner have a bounded curvature, the deviations from the path are

relatively small in practice. An example of the tracking performance for following a

path through a maze is shown in Figure 3.11.

To summarize, all of the control calculations are listed below. First, we calculate

the desired state (p̂t, θ̂t, v̂t, ω̂t), and then compute the controls needed to move towards

the desired state.

p̂t = (x̂t, ŷt) from path P
θ̂t = atan2(ŷt − yt, x̂t − xt)

ω̂t = kθ(θ̂t − θt)

v̂t =



















canonical speed V if |θ̂t − θt| ≤ θturn

small speed ε if |θ̂t − θt| > θturn

kp(|p̂t − pt|) if near the goal

at = kv(v̂t − vt)

αt = kω(ω̂t − ωt)
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In the computation of θ̂t, atan2(y, x) is the standard two-argument arctangent func-

tion.

After all controls are calculated, the state is integrated forward discretely by the

time step ∆t, as described in Section 3.6. The subsequent state becomes the new

location and orientation for the base point of the character. To animate the remaining

joints, the current velocity vt is used to index into the motion interpolation table as

described in Section 3.4.

3.7 Multiple Characters

Sharing the Initial Bitmap

By incorporating minor modifications to the navigation algorithm, scenes involving

multiple characters are possible. The cost of the projection step can be amortized

over several characters by caching the initial projected bitmap B (prior to obstacle

growth). Each character expands the cells marked as NOT-FREE in B by its bounding

radius R to produce a final bitmap for planning. If all multiple characters have the

same bounding radius, then this step needs only to be performed once for each unique

value of R. The same path search algorithm is invoked for each character to connect

their start and goal cells (see Section 3.13 for a simple example and Chapter 6 for

examples of more complex behaviors involving multiple characters).

Coordinating Multiple Individuals

There are several possible strategies for avoiding collisions between characters. One

simple idea is have each character “plan around” the others. For example, we can

project the geometry of the other characters at their current locations prior to obstacle

growth. Since each character may change its location over time, replanning may be

necessary periodically in order to avoid the possibility of a collision between two

characters. One simple coordination scheme might replan whenever other moving

characters cross a character’s current path.
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Figure 3.12: Wandering and following behaviors using a velocity-prediction scheme
to avoid inter-character collisions.

More sophisticated schemes that account for character velocities are also possi-

ble. Instead of planning around the other characters at their current positions, each

character could plan around the other characters’ predicted future positions. A char-

acter’s future position could be calculated by a simple extrapolation of its current

actual or estimated velocity. The examples shown in Figure 3.12, Figure 3.13, and

those in Figure 6.1 and Figure 6.4 utilize this technique in order to avoid potential

inter-character collisions (see Chapter 6).

Customized Controllers

Different characters can also be outfitted with different controllers and motion cycles

in order to reflect their unique styles of motion or behavior. Some characters may
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Figure 3.13: Multiple Characters navigating in a maze.

tend to walk slowly, while others frequently jog or run. Alternatively, the speed with

which a character follows its current path may depend upon its current emotional

state (e.g. sad, frightened, excited).

3.8 Results and Discussion

The algorithms described in this chapter have been implemented on a 200MHz SGI

Indigo2 running Irix 6.2 with 128MB of RAM and an SGI EXTREME graphics ac-

celerator card. Interactive performance has been achieved, even for complex scenes

with multiple characters (see Figure 3.12 and Figure 3.13). During an active session,

the user can click and drag on the goal location or obstacles. The path planner will
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then calculate an updated, minimal-length, collision-free path (if one exists) in ap-

proximately one-tenth of one second on average for a scene with over 10,000 triangle

primitives. Running the software on an SGI R10000 with Solid Impact graphics re-

sulted in a speedup by about a factor of 4, making it possible to replan at every frame

at rates in excess of 30 frames per second. If a path is found, it is sent directly to the

controller, and the character will immediately begin following the new path. Since

the goal is allowed to move arbitrarily, it is possible for one character to perform

simple tracking or following of another character (see Chapter 6). This can be useful

for pursuit games, or having a group of characters follow a tour guide.

The generation of the projection bitmap for path planning was accomplished by

rendering all obstacles to the back buffer using standard OpenGL calls. The render-

ing style optimizations for faster performance as described in Section 3.5 were imple-

mented. The rendered pixel values were subsequently read directly from the frame-

buffer. The modified Dijkstra’s algorithm implementation uses fixed-point math,

resulting in a planner that runs almost exclusively using fast integer arithmetic.

For the purposes of path following, the simple PD controller described in Sec-

tion 3.6 was implemented for a human-like character with 17 joints. Two sets of

motion capture data were used in the experiments: a walk cycle and a jog cycle. As

expected, the slower canonical speed of the walk cycle exhibits better tracking per-

formance along the path compared with the jogging motion. The values of the gains

used for the controller were as follows: (kp= 1.0, kθ= 5.0, kv= 5.0, kω= 10.0). These

gain values are compatible with standard units of meters, radians, and seconds, which

were used throughout the experiments. The value of the time step was ∆t = 0.0333

seconds (1/30 sec).

Figure 3.14 and Figure 3.15 show several snapshots of an interactive session in-

volving a human figure navigating in both a maze and an office environment. The user

can dynamically reposition obstacles and the goal location as the character moves.

The planner rapidly computes a new path based changes in the environment.
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Figure 3.14: A human figure navigating in a maze environment. The path is dy-
namically recomputed as the goal or obstacle locations change. The detail images
illustrate walls being repositioned interactively by the user and the resulting effect
on the character’s motion. The last image shows the trace of the trajectory taken by
the character.
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Figure 3.15: A human figure navigating in an office environment. Initially, the char-
acter follows a path towards the goal located in the lower-right corner. Later, a door
closes forcing the character to select an alternate route. Later still, the character
avoids an obstacle placed in its path, and the goal is moved to a new location. The
bottom two images show the grid used for planning, and a trace of the trajectory of
the character.
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Scene (grid size) Project Search Total (msec)

Maze (50 x 50) 9.5 7.2 16.7
Maze (100 x 100) 34.5 37.4 72.0
Maze (150 x 150) 82.9 79.8 163.0
Office (45 x 45) 47.7 13.9 61.7
Office (90 x 90) 62.7 27.4 90.2
Office (135 x 135) 139.2 56.8 196.0

Table 3.1: Average total execution time for planning.

Performance Statistics

The average projection, search, and total elapsed execution times during repeated

invocations of the planner during an interactive session were tabulated. The timing

results are summarized in Table 3.1. All values listed in the table are in units of

milliseconds, and were averaged from N = 100 independent trials with varying goal

locations and obstacle positions. Different grid resolutions were tested ranging be-

tween 45 and 150 cells on a side. The total number of triangle primitives in the Maze

scene and the Office scene were 2,780 and 15,320 respectively.

The start and goal locations used in these trials were specifically designed to force

a majority of cells in the bitmap to be examined. Simpler path planning queries

will produce proportionally faster path search times. As expected, newer and faster

machines yield better performance. Although detailed timing statistics were not

collected for machines other than the SGI Indigo2, running the software on an SGI

R10000 with Solid Impact graphics resulted in a speedup by about a factor of 4.

Discussion

Although useful in its present form, the navigation algorithm could be improved in a

number of important ways. Each of the following paragraphs outlines one of several

of these issues, along with a discussion of potential methods for improvement.



62 CHAPTER 3. GOAL-DIRECTED NAVIGATION

Uneven Terrain

The planner presented here is limited to finding navigation paths that lie in a plane.

Extending the algorithm to handle uneven-terrain is possible, though it might involve

redesigning the geometry clipping and projection operations. For static environments,

the techniques from [Ban98] or [HC98] are appropriate. Another idea might be to

utilize the depth information information that is generated, but is currently being ig-

nored during the projection process. The hardware Z-buffer stores a relative measure

of the depth, yielding a simple height field of the environment, which can potentially

be used for deciding a navigation strategy.

Large Environments

As mentioned in Section 3.4, the navigation strategy implemented here an its basic

form is impractical when dealing with large environments, since the number of cells

grows quadratically with the size of the walking surface. For such large open expanses

(e.g. outdoor environments), additional data structures are needed to manage the free

space and limit the fine-grained path searching to a local area. There is a large body

of work on finding optimal and approximately optimal paths in large networks (for a

broad overview, see the survey by Mitchell[Mit98]). For example, maximum distance

cutoff values can potentially be used to define a local area. Goals outside the local

area can then be mapped to the nearest free border cells in the grid. Alternatively,

a multi-resolution hierarchical subdivision grid structure can potentially be used to

first find a coarse path on the meta-grid, and then successively finer-grained paths

in the sub-grids. Other possibilities include the use of a global network of landmarks

known to be connected by free paths (a similar idea is proposed in [Ban98]).

Path Following

The path following controller as described here is overly-simplistic, and ignores such

subtleties of human motion as turning in-place, or side-stepping between narrow

openings. Incorporating more motion capture data sets at different velocities, or

along curved paths would also likely improve the final appearance of the animation.
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In addition, the ability to automatically compute the optimal values for the controller

gains based on the simulation constants and the canonical speed of the motion capture

data would be a very useful improvement. Knowing these optimal gains might also

facilitate the calculation of conservative error-bounds on the performance of the path

following controller.

Planner Completeness

Another limitation of the current approach is the approximate nature of the grid,

which may cause the planner to fail to find a free path even when one exists. This

problem is more pronounced if traversing the environment involves navigating through

narrow corridors. Perhaps a multi-resolution strategy or an exact cell-decomposition

approach would be appropriate.

Path Searching Alternatives

The path search algorithm need not be the one proposed here. Consider for example,

the A* algorithm (since A* can be similarly optimized for grid-based searches). A*

operates essentially the same as Dijkstra’s algorithm except that a heuristic function

that estimates the cost to the goal is added to the cost of a node when inserting it into

the priority queue[Nil80]. This causes the algorithm to expand more promising nodes

first, potentially saving a significant amount of computation. The size of the grids

used in our experiments were not large enough to realize this potential savings given

the added cost of computing the heuristic function. However, larger grids will likely

benefit greatly from the use of A* along with a reasonable heuristic function. For even

larger grids, there exists a linear time algorithm due to Henzinger, Klein, and Rao for

computing all shortest paths from a single source in planar graphs[HKR97]. However,

due to the overhead involved in running the algorithm, the potential execution time

savings may only be realized for very large graphs. Other search strategies of interest

cache information for dynamic or unknown environments in order to avoid having to

search from scratch each time, such as the D* (Dynamic A*) algorithm[Ste95].
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Varied Walking Surfaces

Adjacent cells with different heights or surface properties could be assigned higher

costs for traversal (different edge weights in the graph). For example, sections of mud

or gravel on the walking surface could be identified during the projection step such

that the corresponding cells are assigned higher edge weights (see [Jon97]). Thus,

the character will still be able to traverse such regions, but will prefer to go around

them if convenient. However, since non-uniform edge weights are used, a standard

implementation of Dijkstra’s algorithm or A* is needed in order to guarantee the

optimality of the computed path.

Additional Obstacle Avoidance Maneuvers

The navigation strategy described in this chapter does not distinguish between small,

low obstacles (that could potentially be stepped on or over), overhangs (which the

character could potentially duck under), and large columns (that must be circum-

vented). We would like to incorporate into the planning process the ability to step

over low obstacles, or duck under overhangs. One idea might be to classify each pro-

jected obstacle based on its vertical extents. Associating specific character poses to be

used for collision avoidance with different kinds of obstacles is suggested in [Ban98].

Alternatively, the projected cells of low obstacles could be assigned higher cost edge

weights according to their relative height and difficulty to traverse. A similar pro-

cedure could be performed for overhanging obstacles. If the final computed path

includes such cells, the path following phase could be modified to alter the charac-

ter’s locomotion behavior appropriately. For example, if the controller begins to track

parts of the path defined by an overhang, a new set of motion capture data for ducking

under an obstacle could be incorporated into the character’s motion accordingly.

The same basic idea could perhaps be applied to even more aggressive means

of circumventing obstacles, such as utilizing stairs/elevators, climbing, jumping, or

crawling. These other modes of navigation (e.g. jumping over barriers such as walls

and trenches) could be considered during planning and assigned appropriate relative

costs (e.g. energy expended, risk of injury, etc.).
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Goal

Figure 3.16: Behavior oscillation due to dynamic obstacles. A character attempting to
navigate around the wall towards the goal will repeatedly oscillate between following
the two paths shown above if the large obstacles at the edges of the wall alternately
move back and forth.

Preventing Behavior Loops

The proposed navigation strategy will never cause a character to become trapped in

a behavior loop for static environments. Unfortunately, the same guarantee cannot

be made for dynamic environments. Although rare, situations can be constructed

with dynamic obstacles that will cause a character to oscillate between following

two paths initially leading in opposite directions (see Figure 3.16). Incorporating

simulated perception often reduces this problem (see Chapter 4), but does not elim-

inate it entirely. One could potentially keep a record of the character’s position and

heuristically detect when a behavior loop occurs and alter the navigation strategy

accordingly. Similar schemes can also be used if multiple characters become mutually

trapped while attempting to navigate around each other.

Obstacle Semantics

Providing the character with simple obstacle semantics can also potentially improve

the sophistication of the navigation strategy. Identifying certain objects as “movable”

objects might allow a character to dynamically create free space in which to navigate.

For example, if a door is unlocked or slightly open, it might be considered traversable

free space during planning if the character has the ability to open doors. Another

example might incorporate the ability of the character to reposition a chair or other

movable obstacle blocking the middle of a hallway. The cells that correspond to the
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obstacle’s location could be assigned relative weights in the graph that account for

the time/energy required to move the obstacle out of the way. Some of these issues

are discussed further in Chapter 4.



Chapter 4

Sensing the Environment

4.1 Introduction

Sensing for autonomous agents may be defined as “the process of gathering or re-

ceiving data about the environment and the agent itself”[Che96]. Architectures for

autonomous agents usually provide some method of interfacing the agent to the en-

vironment through sensors. Sensory information can be encoded at both a low level

and a high level and utilized by high-level decision-making processes of the agent.

Sensing consists of two fundamental operations: gathering data about the envi-

ronment, and interpreting the data. For a physical agent, gathering data involves

devices such as cameras, laser rangefinders, and sonars, while interpreting data in-

volves software algorithms (e.g. image segmentation, 3D model reconstruction, object

recognition, motion estimation, etc). For an animated agent, sensing is performed

via software, without the use of devices. However, the two fundamental operations

of gathering and interpreting data remain.

Previous researchers have argued the case for employing some kind of virtual per-

ception for animated characters[RTT90]. This may include one or more of simulated

visual, aural, olfactory, or tactile perception. The key idea is to somehow realistically

model the flow of information from the environment to the character. Giving each

character complete access to all objects in the environment yields unrealistic anima-

tion and can be impractical to implement for large environments with many objects.

67
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One way to limit the information a character has access to, is to consider only objects

within the immediate vicinity of a character. For example, Reynolds considered all

objects and neighboring creatures within a sphere centered around each character in

his BOIDS flocking model[Rey87]. However, most characters of interest (including

human characters) do not have such omni-directional perception. Rather, sensory

information from the environment flows from a primary direction, such as the cone

of vision for a human character. Synthetic audition may often be considered to be

omni-directional, but for tasks involving navigation and obstacle avoidance, some

kind of synthetic vision is needed. In this chapter, we develop an approximate model

for synthetic vision that is suitable for interactive animation systems.

4.2 Simulated Visual Perception

Overview

Simulated visual perception, also known as synthetic vision or animat vision, can

provide a powerful means for a character to react based on what it perceives. The

key challenge is to devise a scheme for simulated perception that realistically reflects

both a character’s sensing capabilities and limitations. In addition, the method must

be practical to implement for the target application.

The processes of gathering and interpreting visual data are considered separately.

Gathering visual data for an animated agent generally involves determining which

object surfaces in the environment are currently visible to a character in order to

produce one or more visual images. This problem can be viewed as one instance of

computing a 3D visibility set (i.e. calculating all visible surfaces from a particular

viewpoint given a collection of objects in 3D). Typically, the character has a limited

field of view, and possibly a limited range of vision. Thus, computing the visibility

set from a character’s current location involves intersecting all environment geom-

etry with the character’s cone of vision and performing hidden-surface removal to

determine which objects are visible. There is an extensive history of visible-surface



4.2. SIMULATED VISUAL PERCEPTION 69

determination algorithms in the graphics literature, as it is a fundamental opera-

tion for most display systems[FKN80]. For a good overview and summary of various

methods, see [FDHF90, Tel92].

Once the visual image data is obtained, it is interpreted by the character. Data

interpretation can involve a wide range of computations. At one extreme, a character

could run a stereo-matching algorithm on a pair of images to obtain a depth map, use

image segmentation software and shape-matching algorithms for object recognition,

and optical flow for motion estimation. This is what an actual physical agent might

do in a real environment. At the other extreme, Z-buffer data can be used directly as

a depth map, and the visible object shape and semantic information can be instantly

accessed by the character. Clearly, since an animated agent operates in a virtual

environment, it has unique advantages over a physical agent. We can exploit some

of these advantages in order to meet the performance requirements of interactive

animation systems, while approximately modeling the flow of visual information.

Naturally, care must be taken to model the visual limitations as well as the capabilities

of a character in order to generate realistic behavior.

Approximate Synthetic Vision

There have been several proposals for simulated visual perception. Tu and Terzopou-

los implemented a model of synthetic vision for their artificial fishes based on ray-

casting[TT94, Tu96]. Blumberg experimented with image-based motion energy tech-

niques for obstacle avoidance for his autonomous virtual dog[Blu96]. Terzopoulos and

Rabie proposed using a database of pre-rendered models of objects along with an itera-

tive pattern-matching scheme based on color histograms for object recognition[TR95].

Noser, et al. presented a synthetic vision model that uses object false-coloring and

dynamic octrees to represent the visual memory of the character[NRTT95].

We are primarily interested in synthetic vision techniques that are practical for

real-time systems. Specifically, our goal is to allow an autonomous character endowed

with synthetic vision to explore at interactive rates an unknown environment, while

maintaining a visual memory or “cognitive map” of what it has perceived. This
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map may then be used as input to a planning or navigation algorithm. Due to the

time constraints inherent to interactive systems, the synthetic vision module must

be reasonably fast, and the visual memory model must be simple and efficient to

update. In addition, we require the vision and memory modules to handle changing

environments, where objects can appear, move, or disappear without warning.

Consider the problem of determining the set of object surfaces currently visible to

a character given the environment scene description along with a specification of the

character’s current viewing frustum. Exact geometric algorithms for 3D visibility are

complex, and suffer from poor performance relative to hardware Z-buffers. This is

especially true for large scenes with moving obstacles, which typically cannot be pre-

processed. Recently, there has been work on designing data structures that can handle

dynamic scenes[Com99, CS92], but at present, no software algorithm outperforms a

Z-buffer for computing approximate 3D visibility sets. Fortunately, if our goal is

to realistically simulate vision for human characters, exact algorithms are not likely

needed, since human vision is also not perfect.

We adopt an approach to synthetic vision similar to the one described by Renault

[RTT90] and later refined by Noser, et al.[NRTT95, NT95]. A preliminary version

of the approach is described in [KL99]. The general idea is to render an unlit model

of the scene (flat shading) from the character’s point of view, using a unique color

assigned to each object or object part. The pixel color information is extracted to

obtain a list of the currently visible objects. As pointed out by Thalmann, et al.

in [TNH96], synthetic vision differs from vision computations for real robots, since

the data interpretation problem can be made much easier. This allows us to im-

plement a reasonable model of visual information flow that operates fast enough for

real-time systems. Furthermore, since the object visibility calculation is fundamen-

tally a rendering operation, all of the techniques that have been developed to speed

up the rendering of large, complex scenes can be exploited. This includes scene-

graph management and caching, hierarchical level-of-detail (LOD) approximations,

and frame-to-frame coherency[Str93, FDHF90].

From the list of currently visible objects computed by the vision module, a set

of observations is formed by combining this list with each object’s current location.



4.3. INTERNAL REPRESENTATION AND MEMORY 71

Finally, this set of observations is added to the character’s internal memory model

of the environment, and a navigation plan is computed. The navigation planning

algorithm uses the fast path planner, motion controller, and cyclic motion capture

data, as described in Chapter 3. However, any appropriate real-time navigation

planning strategy may be used.

For our system to work, we assume the environment is broken up into a col-

lection of small to medium-sized objects or surface patches, each assigned a unique

ID. For example, a single object may be a chair or a door. Large objects such as

walls or floors are further subdivided, and each piece is assigned an ID. This assign-

ment could potentially be done automatically using object-level spatial subdivision

techniques[Nay92, PY90, FKN80], though some human intervention may ultimately

be required. Fortunately, this assignment need only be performed once. Afterwards,

a color table is initialized to represent a one-to-one mapping between object IDs and

colors.

To check which objects are visible to a particular character, the scene is rendered

offscreen from the character’s point of view, using flat shading and using the unique

color for each object as defined by the object ID (see Figure 4.1). Note that this

color is used only when rendering the visibility image offscreen, and does not affect

renderings of the object seen by the user, which may be multi-colored and fully-

textured. The size of the rendered image need not be very large (usually 200x200

pixels yields sufficient detail).

When rendering is complete, the resulting image pixels are scanned, and a list of

visible objects is obtained from the pixel color information. This list may then be

combined with other environment state information to encode higher-level aspects of

a character’s perception. Possible examples include encoding semantic information

about certain objects, velocities of objects, and relationships between objects.

4.3 Internal Representation and Memory

Each character maintains an internal model of the world as it explores a virtual envi-

ronment. Noser, et al. used an occupancy grid model (e.g. an octree) to represent the
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Figure 4.1: The top image shows a character navigating in a virtual office. An outline
of a representative portion of the character’s viewing frustum is shown. The bottom
two images show the scene rendered from the character’s point of view. The image
on the right is the true-color, lighted model, while the image on the left is the unlit,
color-coded visibility image.
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Figure 4.2: Another example view in a virtual office scene.
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visual memory of each character[NRTT95]. We instead rely upon the object geometry

stored in the environment along with a list (or possibly an array) of object IDs and

their most-recently observed states. This provides a compact and fast representation

of each character’s internal world model that is scalable to large environments with

many characters.

When a character observes the environment, the vision module returns the set of

object IDs representing objects that are currently visible. Each object ID is combined

with other state information, such as the corresponding object’s current 3D trans-

formation. The state information of each of the visible objects is obtained directly

from the environment, and the character updates its internal model of the world with

each object’s recently observed state. Previously unobserved objects are added to

the character’s list of known objects, and the rest of the visible objects are simply

updated with their current state. Objects that are not currently visible but have

been observed in the past, retain their most recent previously-observed states. This

process maintains a kind of spatial memory for each character.

4.4 Perception-Based Navigation

Using such a sensing and memory model, a character can be made to explore in real-

time an unknown environment, and incrementally build its own internal model of the

world. We now describe the algorithm in more detail. First, we will describe the

basic sense-plan-control loop that works for static environments. We then show how

to modify the basic algorithm to work for dynamic environments.

Updating M in Static Environments

Let O denote the set of all objects in the environment. Each character maintains

a set M of observations built incrementally from the output of the vision module.
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Observations are represented as tuples 〈objIDi,Pi, Ti, vi, t〉, with components:

objIDi the object ID of object i

Pi properties of object i

Ti 3D transformation of object i

vi velocities of object i

t observation time

The set Pi contains properties of the object, including semantic information about

the object, or characteristics pertinent to its current state. For example, if the ob-

served object is a door, then Pi might identify the object as something that can be

moved (rotated), is currently closed, is currently unlocked, etc. For storage efficiency,

permanent (unchanging) object properties can be stored in a global table indexed by

objectID, while variable properties can be encoded with observation bit flags.

Object properties are flexible and as explained further in Section 4.5, can be uti-

lized by higher-level reasoning engines to enable the character to make more informed

decisions about the world. The transformation Ti is the observed position and orien-

tation of the object represented by objIDi. The component vi contains the observed

linear and angular velocities of the object. The last component t is the time stamp,

or the time that the observation was made.

M represents the character’s visual memory of O. Initially M is empty. At

regular intervals, the character’s visual perception is simulated by the vision module,

which renders the color-coded instances of the objects in O. After scanning the pixels

of the resulting image, the set V is returned, containing the object IDs of all currently

visible objects. Each objIDi in V is combined with its corresponding object’s state

information to form the tuple Ω = 〈objIDi,Pi, Ti, vi, t〉.
If no existing tuple in M contains objIDi, then the object was previously un-

known, and Ω is added to M. Otherwise, if there exists a tuple in M that contains

objIDi, then this object was previously observed. Hence, its corresponding state

information is updated based on the values contained in Ω. After M has been up-

dated from V, then the navigation path-planning module is invoked using only the

objects and transformations in M as obstacles. Thus, each character plans a path
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Figure 4.3: The basic sense-plan-control loop for static environments.
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Figure 4.4: UpdatingM in static environments

based solely on its own learned model of the world. As the character follows the

path, new objects are observed, and M is updated by repeating the above process,

and a new path is computed. The data flow of the algorithm is shown in Figure 4.3.

Figure 4.4 illustrates howM is incrementally updated as previously unknown objects

are observed.

Updating M in Dynamic Environments

The aforementioned procedure works fine for environments with static objects, but

we need to make a minor modification to correctly handle changing environments
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where objects can appear, disappear, or move around unpredictably. The problem

lies in recognizing when a previously observed object has disappeared (or moved)

from its previously observed location. As an example, let us consider the following

two scenarios:

• A character observes an object o2 at a location T2. Later, o2 moves to a new

location T ′

2, and is again observed. In this case, the state information for o2 in

M should be simply updated to reflect the new location.

• A character observes an object o1 at a location T1. Later, o1 moves to a new lo-

cation T ′

1. However, before the new location is observed, the character observes

its former location (o1 is now missing). In this case, the previous observation of

o1 inM should be deleted or invalidated.

These two scenarios are depicted in Figure 4.5. The left side illustrates the case

where a previously observed object(2) moves to a new location, and the new location

is observed before the former location. The state information inM for the object is

updated to account for the new observation(2*). The right side of Figure 4.5 depicts

the case where a previously observed object(1) moves to a new location, and its former

location is observed prior to its new location. The character should realize that the

object is now missing and remove or invalidate the observation inM.

How can the vision module determine whether an object is truly missing, rather

than simply obscured by another object? The solution is to re-run the vision module

after M has been updated using only the objects contained in M, along with their

corresponding transformations. The result is a set VM of object IDs that corresponds

to the set of objects the character expects to see based on M. By comparing V and

VM , we can distinguish the above case. Specifically, let X = VM − V be the set of

all object IDs contained in VM but not in V . Thus, X corresponds to objects that

the character concludes have disappeared or moved from their previously observed

locations, but their new locations are unknown. Consequently, all observation tuples

inM containing object IDs in X must be removed or invalidated.

Incorporating these modifications into the synthetic vision algorithm facilitates

its use in arbitrarily changing environments. The data flow diagram of the modified
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4.5. LEARNING AND FORGETTING 79

Environment
Objects

Synthetic
Vision
Module

Character
Spatial

Memory
Update
Rules

Planning
&

Control
Module

Kinematic Update & Rendering

V

M*

Motion
Controls

MV

M

Figure 4.7: The revised sense-plan-control loop for dynamic environments.

algorithm is shown in Figure 4.7. Two scenarios where the lists of visible objects(V)

are the same, but the final updates toM are different, are depicted in Figure 4.6. The

scenario on the left corresponds to the obscured case, where the previously-observed

object(1) is hidden by the appearance of a new object(3). V and VM are equal in this

case, so M retains its previous observation of object(1). The scenario on the right

corresponds to the missing case, where the previously-observed object(1) has moved

to an unknown location while a new object(3) has appeared. Since V and VM differ,

the previous observation of object(1) is removed fromM.

4.5 Learning and Forgetting

Memory Types

The memory update rules described in Section 4.4 represent a very simple model that

remembers all observations until sensing contradicts them. We refer to this as the ba-

sic model. However, the framework proposed allows several possible memory models

to be used. For example, one can imagine a temporal model that remembers observa-

tions only for a certain period of time. In this case, old observations are periodically

deleted from the character’s memory. Alternatively, deleting old observations may

depend upon the properties of the object. For example, if a non-movable object such
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as a wall or a floor were observed, we may wish to always retain that observation,

while if a moving object such as a vehicle or animal were observed, we may decide to

expire such observations as time passes. This means that there can be different types

of objects in the world, and different memory rules for each type. We refer to this

type of model as a rule-based model. The rules governing the update of the character’s

memory determine how to handle observations of certain objects or object types.

Rule-Based Models

Above low-level navigation planning, there is a layer of reasoning that makes deci-

sions about the goals and beliefs of the character based on its internal model of the

world. There are many proposed architectures for implementing rule-based models in

the artificial intelligence literature, each with advantages and disadvantages (for an

overview and examples, see [RN95, JSW98]). For the purpose of creating autonomous

characters, any suitable AI architecture will suffice given that is operates efficiently

and provides the ability to encode memory rules. The rules can then be made ar-

bitrarily complex. For example, suppose that a character is exploring an unknown

maze of connecting rooms with the goal of finding an exit. After some time, suppose

the character concludes that no exit exists based on what it has previously observed

(i.e. the low-level navigation planner fails). This event may then trigger some higher-

level reasoning that will allow the character to continue to explore (e.g. there is no

path, but some doors which have been seen closed or locked recently may have been

opened in the meantime. Therefore, observations about closed doors may be deleted

for the purposes of navigation planning, despite the fact that they are not yet old

enough to discard/forget, etc).

Probabilistic Models

There are no limits imposed upon the complexity of the rule-based models chosen

other than practical memory-usage limitations and the time-constraints of the appli-

cation. For instance, one could potentially adopt a probabilistic approach to handle
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the uncertainty inherent in making plans based only upon a partially-observed rep-

resentation of the environment. Almost all the reasoning that real humans do is

based on imperfect knowledge. We would like our animated agents to also behave

appropriately under these circumstances.

In the artificial intelligence literature, there has been a growing movement to-

wards knowledge representation languages that support an explicit representation of

uncertainty[KP97]. The emphasis has been on probabilistic representations, which

allow the agent’s reasoning process to utilize such techniques as conditioning for in-

corporating new information, and expected utility maximization for making decisions

[Jen96, CDLS99]. Concepts such as Bayesian belief networks that provide a com-

pact representation of complex probability distributions could be used to allow the

agent to make inferences based on observations of the environment. These prob-

ability distributions could even be generated automatically using machine learning

techniques[Mit97]. This research is beyond the scope of this thesis, but could po-

tentially provide very useful means for designing intelligent animated agents in the

future.

4.6 Perception-Based Grasping and Manipulation

The synthetic vision module can be used not only for tasks involving navigation, but

for a variety of tasks that require visual coordination. This includes grasping and

manipulation tasks (see Chapter 5). For preliminary research on perception-based

grasping and manipulation for autonomous agents, see the U.Penn papers[GLM94,

DLB96], and the sensor-based grasping model of Huang[HBTT95].

In the examples shown in Figure 4.8 and Figure 4.9, the synthetic vision module is

used in order to verify that a particular target object is visible prior to attempting to

grasp it. If the object is visible, the grasping and manipulation planner is invoked. If

the target object is not visible, the character could try to reposition itself, or initiate

a searching behavior in an attempt to find the missing object.
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CHARACTER VIEW

Figure 4.8: Grasping a coffee pot

CHARACTER VIEW

Figure 4.9: Grasping a flashlight
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4.7 Other Forms of Perception

Although synthetic vision is the most immediately useful form of simulated perception

for navigation and manipulation tasks, other synthetic senses could potentially be

incorporated. Although we have not performed any experiments with these other

forms of perception, we feel that they are worth mentioning.

Simulated Aural Sensing

Simulated aural sensing or synthetic audition is one possibility. An autonomous char-

acter should react based not only on what it sees, but also what it hears. Real humans

perceive much about their surrounding environment through hearing (e.g. possible ap-

proaching danger, relative motions of sound sources via the doppler effect, the size

of a space based on its acoustical properties, and listening to the spoken words of

others). In virtual reality systems, users tend to rate the immersive quality of their

experience much higher if 3D sound effects are included in the simulation.

Animated agents that react to the sounds around them will likely appear more

lifelike and believable. Noser and Thalmann proposed ideas about how synthetic

audition might be used for autonomous animated characters[NT95]. There has also

been active research on effectively modeling the acoustics of virtual environments. A

clear and comprehensive presentation of 3-D audio principles and technology can be

found in Begault’s book[Beg94].

In order to facilitate the interaction of human characters, simulation of explicit

verbal communication between characters is needed. Thus, knowing whether or not

one character can hear the spoken words of another will require some kind of simulated

aural sensing. Perhaps the most compelling reason to simulate the hearing of actors,

is to facilitate natural communication with real human users. Indeed, viewing the

autonomous animated character as a virtual robot means that ultimately, it may have

software for human speech recognition capabilities built-in. In the future, instead of

using a mouse, users may be able to give verbal commands to digital actors in the

same way that movie directors give verbal directions to real actors.
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Simulated Tactile Sensing

Synthetic tactile feedback is another sense that could potentially be exploited by

autonomous characters. In particular, simulating the sense of touch might be partic-

ularly useful for object manipulation tasks. Some research has been done on sensor-

based object grasping and manipulation[HBTT95], although here simulated sensors

are used more for collision-detection in generating a correct grasping posture for the

hand, rather than really providing simulated tactile feedback to the agent.

Simulating the sense of touch involves calculating sets of forces or other nerve

signals (e.g. heat, pain) that are generated when a character makes contact with an

object in the environment. Recently, there has been great interest in haptic rendering

or force display, which aims to compute the forces generated when a live user interacts

with a virtual object[RKK97]. The user obtains real-time force-feedback through the

use of a haptic device, such as a tendon-driven glove, a robot arm, or even full-body

feedback via a motorized exoskeleton. By removing the haptic display hardware

altogether, and replacing it with a software interface to an animated agent, one could

conceivable use existing technology to provide tactile feedback to the agent.

Given a set of forces, the character would have to interpret the simulated sensa-

tions. For example, there might be a pattern-recognition algorithm based on forces

instead of image pixels. Applying haptic display technology to virtual humans is an

open area of research.

4.8 Results and Discussion

In this section, we describe a few of the experiments we have conducted using the

model of synthetic vision outlined in this chapter. We have implemented and tested

the algorithms on an SGI InfiniteReality2 running Irix 6.2. Interactive performance

has been achieved on complex scenes with up to three characters running full syn-

thetic vision and memory. More than three characters tended to degrade performance

unacceptably on a single machine. In such situations, a distributed approach where

each character had its own dedicated hardware Z-buffer card would likely facilitate
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Figure 4.10: After viewing all objects in a room, a character is commanded to walk
to one corner.

simulations of many more characters.

Figure 4.10 through Figure 4.13 illustrate a series of snapshots during an interac-

tive simulation involving a human character navigating an a room filled with objects.

Figure 4.10 shows a human character after building a complete cognitive map of a

room. Figure 4.11 shows a previously-observed table being moved to a new location

behind the character’s back. Since the character is unaware of the change, its navi-

gation path to the goal location is unaffected. Figure 4.12 illustrates that fact that

when the goal location is moved, the character plans a path assuming the table is

still at its former location. Finally, Figure 4.13 depicts how when the character turns

around to follow the planned path, it notices the table in its new location, and plans

accordingly.

Figure 4.14 shows snapshots at various stages of an animation involving a single

character exploring an unknown maze environment. The final path is solely the result

of the interaction between path planning based in the character’s internal model and

the visual feedback obtained during exploration. Figure 4.16 shows a trace of the

actual motion of the character during exploration. Figure 4.17 shows a trace of the
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Figure 4.11: A table is repositioned behind the character’s back.

Figure 4.12: As the goal location is moved, the character continues to plan using the
table’s formerly observed location.
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Figure 4.13: After the character turns around and sees the table in its new location,
it updates its memory model and replans.

actual motion during exploration of another unknown maze with dead ends that

forced the character to backtrack.

Discussion

This chapter presents a simple model of visual perception, memory, and learning for

autonomous characters that is suitable for real-time interactive applications. The

model is efficient in both storage requirements and update times, and can be flexibly

combined with a variety of higher-level reasoning modules or complex memory rules.

Although the synthetic vision module runs fast enough to support a small number

of characters simultaneously, it is currently the bottleneck in the computation. This

is primarily due to the fact that each character must render the scene twice in order

to correctly update its cognitive map in the case of dynamic environments. A general

memory update scheme for dynamic environments that avoids having to render the

scene twice per character would certainly be very useful in improving the efficiency of
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Figure 4.14: Snapshots of a character exploring an unknown maze environment. Ob-
jects rendered solid are those contained in M, while those rendered wireframe are
unknown. The top-left image shows the initial frame with the character given the
task of navigating from the bottom-right corner to the top-left corner of the maze. A
portion of the character’s viewing frustum, along with the current path is also shown.



4.8. RESULTS AND DISCUSSION 89

Figure 4.15: Images of the scene rendered from the character’s viewpoint during each
of the snapshots shown in Figure 4.14.
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Figure 4.16: Detail of the trajectory followed by the character during the exploration
of the unknown maze environment of Figure 4.14.
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Figure 4.17: The trajectory followed during exploration of another unknown maze
environment.
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the synthetic vision module, and allowing approximately twice as many characters to

be run simultaneously. Other possibilities include invoking the vision module every

other frame, or at some regular interval. This could allow one to gain speed (or

additional characters) at the expense of accuracy.

One problem with the model of synthetic vision as presented has to do with the

fact that only the presence of an object pixel in the character’s visual field image is

considered, and not its location, or how many pixels of the object are visible. If only

a tiny fraction of an object is visible, is the object really visible to the character?

There are several ways in which this problem could potentially be addressed. One

idea is to define a “minimum visible pixel area” that must be met prior to declaring an

object as being actually perceived by the character. This could be done by comparing

the estimated screen area of an object to the total number of pixels of that object

that were observed. The object would only be “recognized” if a certain number of

pixels were visible at a given distance.

An alternative is to define a mandatory feature that must be seen in order for

a character to recognize an object (e.g. if the object is another character, we could

require that the character’s face be seen before it is recognized). Until that particular

feature (or set of features) is seen, the object remains an “anonymous” obstacle.

At a more conceptual level, the model of synthetic vision presented here uses a

very simple method of visual data interpretation (using the object ID). Although

this method has the advantage of being relatively fast for the purposes of interactive

applications, it has a number of important limitations.

For instance, suppose a character observes a lecture hall filled with hundreds of

similar chairs. After the character leaves the room, suppose one particular chair (say

chair #61) is removed and observed. Using the object ID, the character will automat-

ically know that this is chair #61, which is clearly unrealistic. Special observation

rules could be potentially used to govern sets of seemingly identical objects, but doing

this in a general way may not be easy.

Another limitation of the synthetic vision model is its inability to handle object

transparency or reflections. This stems from the fact that the actual images seen by

the character are bypassed, and only uniform projections of object geometry is used.
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For example, suppose a character observes an object through a window, or sees the

reflection of an object in a mirror. While image-based pattern-matching synthetic

vision techniques might correctly classify the object as being observed, the method

adopted here fails. Graphic subsystems capable of “screen-door” transparency ren-

dering could enable the method to correctly “see through” transparent objects, but

this does not provide a general solution.

As mentioned previously, in the interests of realism, it is important to model the

capabilities as well as the limitations of a character. In this chapter, we have assumed

that a character is always perfectly “self-localized”, meaning that it always knows its

own relative location in the environment exactly. However, real humans can become

confused or even lost in certain environments, such as a hallway of twisting corridors

or a room of mirrors. A different kind of confusion occurs when a human mistakes a

tiger skin for a real tiger. Ultimately, these and other issues will have to be addressed

in order to create more realistic models of simulated perception for animated agents.



94



Chapter 5

Manipulation Tasks

5.1 Introduction

This chapter describes a motion generation strategy that combines inverse kinematics

and path planning to animate reaching and object manipulation tasks. Object ma-

nipulation is an important class of motions for animated characters. Like navigation

tasks, manipulation tasks can encompass a virtually unlimited combination of object

and obstacle geometries. Thus, it seems unlikely that one would be able to success-

fully enumerate all possibilities and simply store thousands of clip motions. Instead,

a flexible strategy that can accommodate a wide range of situations is needed.

Related Work

Computing motions that solve manipulation tasks is related to research in robotics,

computer animation, and neurophysiology. We give a brief overview of some of this

related work in the following paragraphs:

Robotics: Generating motions for robot manipulator arms is a major area of re-

search in the robotics literature. Path planning techniques have been applied to

this problem since Lozano-Perez popularized the configuration-space approach that

95



96 CHAPTER 5. MANIPULATION TASKS

is now widely used in planning for manipulator arms[LP83]. Faverjon and Tour-

nassoud developed a manipulation planner to plan motions for a robot arm moving

among vertical pipes[FT87]. Manipulation planning for repositioning movable objects

in 2D workspaces was investigated by Wilfong, and later by Alami, et al.[ASL90].

Wilfong showed that manipulation planning for a single movable object is PSPACE

hard[Wil88]. Khatib developed a potential-field approach for collision avoidance in

[Kha86], which was later used by Quinlan for modifying collision-free paths for ma-

nipulator arms in real-time[Qui94]. Lynch implemented a system for manipulating

objects by pushing[Lyn93]. Koga developed a multi-arm manipulation planner for

repositioning objects in a 3D workspace[Kog94]. A number of randomized path plan-

ning techniques have been developed that are suitable for searching high-DOF con-

figuration spaces such as human arms (see Section 5.4).

Computer Animation: For animating the movements of human limbs, a variety

of kinematic and inverse kinematic techniques have been proposed [KB82, TT90,

BPW92], though relatively few consider complex object manipulation tasks. Lee,

et al. simulated lifting motions using simplified human arm muscle models [LWZB90].

The use of path planning to automatically generate graphic animation was suggested

in [LRDG90]. Subsequently, motion planning was used for animating transitions

between body postures in [CB92], [JBN94], and [BMT97]. Koga, et al.[KKKL94a]

used motion planning to automatically generate multi-arm manipulation motions for

human figures. This planner was used to generate a rather complex animation clip

involving a human character playing chess with a robot arm[KKKL94b]. Bandi used

workspace discretization and inverse kinematics for quickly planning collision-free

reaching motions[Ban98]. Other related research includes task-level grasping[DLB96],

and computing human hand and finger postures for object grasping using collision-

detection[HBTT95].

Neurophysiology: There are many studies in psychology and neurophysiology

aimed at determining how the central nervous system of a human manages to co-

ordinate the motion of its limbs. The problem was formulated and investigated in
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the 1930s by Bernstein[Ber67]. It is now widely agreed in the medical community

that human arm movement is represented kinematically[S+91], and the dynamics or

muscle activation patterns are generated as a post-processing step. A good survey

of this and other results can be found in the book by Latash[Lat93], or among the

collections of articles in [MT86] or [Wal89]. In particular, a numerical model derived

from actual human pointing tasks is described in [SF89], and forms the basis of the

human arm inverse kinematics algorithm described in [Kon94]. This algorithm was

used for the experiments in [KKKL94a], as well as this chapter (see Section 5.3).

Animating Manipulation Tasks

As discussed in Chapter 2, much of the difficulty in synthesizing manipulation motions

for character animation stems from the near infinite number of possible goal locations

and obstacle arrangements in the environment. This combinatorial explosion of pos-

sibilities currently prohibits the direct use of pre-recorded motion sequences.

Motion planning techniques are particularly well-suited for solving problems that

involve computing collision-free motions amidst obstacles. In this chapter, we develop

a manipulation planner for a single human arm. The human arm is modeled as a

kinematic chain with 7 degrees of freedom, and motion trajectories are computed

directly within the configuration space. Because of high-dimensionality, the space

cannot be explicitly represented (as was the case for navigation in Chapter 3). Instead,

the space is sampled using a randomized planner that has been specifically tailored

to quickly solving common planning queries involving human arms.

In the sections that follow, we give an overview of the problem of manipulation

planning for human arms, and discuss its unique challenges. We then discuss random-

ized path planning and introduce a new manipulation planner designed for efficiently

generating collision-free motions for single-arm manipulation tasks. A technique for

coordinating the head and eye movements in conjunction with the arm motions is

presented in order to increase naturalness. Experimental results are presented along

with a summary discussion.
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Figure 5.1: Manipulating the controls of a virtual car.

5.2 Manipulation Tasks for Humans

Overview

Object manipulation tasks are ubiquitous in everyday human life. Tasks such as

combing one’s hair, washing dishes, driving a car, eating, drinking, and playing board

games all involve precisely coordinated arm movements. How the human central

nervous system (CNS) solves such tasks seemingly effortlessly has been the subject

of study in both neurophysiology and robotics. Neurophysiologists have sought to

understand more about the human brain and its functions. Robotics researchers look

for clues as to how to program robotic arms to solve manipulation tasks, especially

in the context of designing humanoid robots for general-purpose use. For computer

animation, our goal is to create software for automatically generating manipulation

motions for human characters.

Neurophysiological Results

Neurophysiological studies have shown that the coordination of arm motions in real

humans is primarily derived from the precise control of a working point [Lat93]. In

the robotics literature, this point is sometimes referred to as the tool frame or opera-

tional space frame, and consists of both a position and rotation relative to a reference
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frame[Cra89, Kha95]. Here, we will adopt the robotics convention of specifying both

a position and rotation which we call the task frame.

The task frame identifies the most important geometric surfaces for executing

a certain task. For example, for grasping an object, the task frame may lie on a

fingertip or palm, whereas for hitting a nail with a hammer, the task frame will likely

be located at the tip of the hammer. Presumably, this is the location about which

the human central nervous system is mostly concerned, since its trajectory is vital

for completing the task successfully. Neurophysiological studies have shown that the

trajectory of the origin of the task frame is better reproduced in repeated trials than

trajectories of individual joints[BFF86, Soe84].

Human Figure Animation

For generating reaching, grasping, or manipulation motions for animated characters,

we can similarly define a task frame. For instance, the task frame for picking up a

coffee pot might be the character’s palm. A grasp transformation defines the geomet-

ric relationship between the task frame and the object being manipulated. A grasp

specifies a grasp transformation along with a configuration of the character’s hand

and finger joints.

There may be many possible grasps associated with an object, some possibly

involving multiple arms. Calculating a set of possible grasps automatically from an

object’s geometry is a complicated problem, and has been addressed in the robotics lit-

erature (see [PT89] for a survey of this work). For human arms, studies in neurophysi-

ology suggest that humans select grasps based on prior experience or intention[AW89].

In this chapter, we shall regard the selection of a grasp as dependent primarily

upon an object’s geometric and physical properties. Thus, we assume that a valid

set of grasps for a particular character morphology is pre-specified by an animator

and associated with an individual object (or class of objects with similar geometry).

Other researchers have also proposed storing information about how a virtual object

should be manipulated (such as grasp locations) along with the object itself, in order

to facilitate object-character interactions [GLM94, KT99]. We also consider only
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single-arm grasps, since we focus on manipulation tasks that can be accomplished

by a single arm. However, objects that require multiple arms for grasping could

potentially be handled by incorporating techniques from Koga, et al.[KKKL94a].

Given the current configuration of a character, we can compute a goal configuration

for the character to grasp a target object using the following:

1. The relative position and orientation of the object.

2. A valid grasp (i.e. a grasp transformation, plus a configuration for the hand).

3. An inverse kinematics algorithm.

The goal configuration is then passed as input to a motion synthesis strategy used to

compute a motion for the character to reach and grasp the object. Once the object

has been grasped, a similar procedure can be used to move the object to a target

location (see Section 5.5).

5.3 Inverse Kinematics

Overview

Researchers in the field of human motor control and analysis have long puzzled at

how the central nervous system selects a particular combination of joint angles to

achieve a given task frame position in the workspace. For a good overview of some of

the theories and experimental results, see [Lat93].

In robotics, this problem is known as a problem of inverse kinematics (IK). Math-

ematically, we desire a function which maps a given global transformation Gj for

a link frame Fj to a set Q of values for q (see Section 2.5). Each configuration

q ∈ Q, represents a valid inverse kinematic solution. The forward kinematics func-

tion Forward(q) positions the link Lj, such that the frame Fj has a global transfor-

mation of Gj relative to the reference frame Fworld. For a more thorough treatment

of inverse kinematics issues and methods, please consult a robotics textbook (for

example [Cra89]).
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Since there are no general algorithms for directly solving a set of nonlinear equa-

tions, most inverse kinematic problems do not have general solution methods. There

are two basic approaches to solving inverse kinematics problems: numerical meth-

ods, and analytical (exact) methods. Numerical methods typically employ an iterative

procedure to search for solutions to a set of kinematic equations. Analytical methods

use closed-form algebraic expressions derived from the kinematic equations.

For any inverse kinematics problem, there are two fundamental issues that must

be dealt with:

Existence of solutions: Due to limitations on the link geometry and valid joint

ranges, not all positions and orientations in the workspace can be achieved by the

task frame. For these cases, no valid solutions exists (Q is the empty set).

Multiplicity of solutions: If a solution does exist, it may not be unique. Due to

kinematic redundancies, there may be any number of valid joint configurations that

will place the task frame at a particular position and orientation. In some cases, there

are infinite number of such configurations (Q is an infinite set).

Analytic solution methods are typically much faster than numerical methods and

often return all possible solutions if a solution exists. Unfortunately, analytic solution

methods only exist for a subset of possible kinematic arrangements of links.

Human Arm Inverse Kinematics

A simplified kinematic model of a human arm usually consists of three links (upper

arm, forearm, hand) and three joints (shoulder, elbow, wrist). The shoulder joint

and the wrist joints are typically modeled as spherical joints having three rotational

DOFs each, with the elbow joint having one rotational DOF. This yields a combined

total of seven DOFs (see Figure 5.2).

Since an arbitrary position and orientation in 3D specifies only six constraints

(three for position and three for orientation), the inverse kinematics problem for the

simplified model of a human arm involves an underconstrained system of nonlinear
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Figure 5.2: Simplified kinematic model of a human arm (7 DOF).

equations. This means that in general, there are many possible arm configurations

for a given hand position and orientation. For the purposes of graphic animation, we

would like our inverse kinematics algorithm to select a “natural” arm posture when

faced with a range of possible inverse kinematic solutions.

For the experiments described in this chapter, we have adapted an inverse kine-

matics algorithm for human arms that was originally developed by Kondo[Kon94].

The algorithm is based on the sensorimotor transformation model of Soechting and

Flanders[SF89]. This model was derived from a set of experiments conducted using

human subjects who where instructed to move a pen-sized stylus to various targets in

their vicinity. Analysis of their recorded arm postures revealed that the joint angles

for the arm can be approximated by a linear mapping from the spherical coordinates

of the stylus frame relative to the shoulder. The resulting equations resolve the re-

dundancy in the human arm and identify a single “natural” arm posture based on

the arm postures observed in the experiments. For a detailed description of the basic

Kondo inverse kinematic algorithm for human arms, the reader is referred to [Kon94]

or [KKKL94a]. One of the nice features of this algorithm is that it uses analytic

equations to find a natural approximate posture. Thus, the algorithm is both consis-

tently fast, and repeatable (i.e it doesn’t depend upon an initial guess, as is the case

for most iterative algorithms).
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Figure 5.3: Path planning for a 7-DOF human arm

In our experiments, we assume that the torso and shoulder positions remain fixed

for the duration of the manipulation motion. This assumption is reasonable for ma-

nipulation tasks involving small, nearby objects. Other tasks may require the use of

additional degrees of freedom in the shoulder, torso, or legs. See Section 5.6 for a

brief discussion of possible ways to incorporate these additional degrees of freedom

into the planning process.

5.4 Path Planning

Introduction

Path planning problems arise in such diverse fields as robotics, assembly analysis, vir-

tual prototyping, pharmaceutical drug design, manufacturing, and computer anima-

tion. Such problems involve searching the system configuration space for a collision-

free path connecting a given start and goal configuration[Lat91]. For problems in low

dimensions, the configuration space can often be explicitly represented as exempli-

fied in Chapter 3. For high-dimensional configuration spaces however, it is typically

impractical to explicitly represent the configuration space. Instead, the space is sam-

pled in order to discover free configurations. Here, the fundamental challenge lies in

devising a practical and efficient sampling strategy.
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This section describes a randomized path planner with a sampling heuristic specif-

ically designed for computing collision-free manipulation motions for human arms.

The sampling heuristic is based on Rapidly-Exploring Random Trees (RRTs)[LaV99,

LK99]. The heuristic is optimized to quickly handle single-query path planning prob-

lems without any preprocessing of the configuration space. Although designed with

human figure animation applications in mind, the path planner has also been demon-

strated to be both efficient and practical for a variety of planning problems. Referred

to in this thesis as the RRT-Connect heuristic, the method exhibits rapid conver-

gence for simple spaces and relative immunity to pathological cases. The rest of

Section 5.4 gives a broad overview of previous work in randomized path planning,

and then describes the RRT-Connect path planner. Section 5.5 explains how to use

the RRT-Connect planner for animating single-arm manipulation tasks. Section 5.6

show several computed examples along with a summary discussion.

Background

Randomized algorithms for path planning have enjoyed success and popularity in the

last several years due to their efficiency in handling problems with many degrees of

freedom[BKL+97]. The randomized path planner of Barraquand and Latombe[BL90]

was an early attempt to practically solve problems with high-dimensional configura-

tion spaces. Their search technique alternated between following the gradient of an

artificial potential field[Kha86], and utilizing random walks in order to escape the

basin of attraction of any local minima encountered. Variations of this planner were

used to solve complex single and multi-arm manipulation tasks[Kog94, KKKL94a].

Unfortunately, pathological cases involving local minima can exist such that the prob-

ability of escaping them via a random walk is extremely small [CG93, KŠLO96].

In order to avoid the problems of local minima inherent with artificial potential

fields, new sampling strategies were devised. Probabilistic roadmap methods build a

network of randomly-sampled free configurations in the configuration space [Ove92,

KL93, Sve93, Kav95]. After the network (roadmap) has been built, a path may be

searched for using standard graph-search algorithms.
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Theoretical results show that under reasonable assumptions on the geometry of

the configuration space, a relatively small roadmap can correctly capture the connec-

tivity of the free space with high probability[HLM97]. More precisely, the probability

that a roadmap incompletely represents the connectivity of the free space decreases

exponentially with the number of sample points in the roadmap. The main issue

affecting coverage of the free space is the presence of narrow passages in the configu-

ration space[HKL+98].

There are numerous variations on the basic roadmap strategy, most of which rely

on different sampling techniques in an effort to reduce the computational costs[HST94,

AW96, HKL+98, BOvdS99]. The computed roadmaps are especially suitable when

multiple path-planning queries are given for a robot in the same static environment,

since searching a roadmap is very fast. However, the overhead associated with build-

ing the roadmap is often too large for single-query planning problems in interactive

environments.

Hsu, et al. developed a variant of the probabilistic roadmap planner that is

better-suited for solving single-query path planning problems[HLM97]. It avoids the

initial cost of preprocessing by incrementally building two trees respectively rooted

at the start and the goal. As the trees grow, the planner periodically attempts to

join them together to form a path. The idea of constructing search trees from the

initial and goal configurations comes from classical AI bidirectional search, and an

overview of its use in motion planning methods appears in [HA92]. In order to avoid

oversampling any region of the configuration space, the planner incrementally samples

around nodes in the trees according to a weighted probability that favors nodes that

have few neighbors.

Recently, LaValle introduced the concept of Rapidly-exploring Random Trees

(RRTs) [LaV99], a randomized sampling scheme originally designed for nonholonomic

motion planning. RRTs have also been applied to kinodynamic planning problems in

configuration spaces of up to 12 dimensions[LK99]. For both holonomic and nonholo-

nomic planning, the sampling technique exhibits several desirable properties. Similar

to the planner in [HLM97], the goal is to incrementally build a tree of free config-

urations in a way such that the expansion of the tree is heavily biased towards the



106 CHAPTER 5. MANIPULATION TASKS

unexplored regions of the space. Due to the way that RRTs are constructed, the

distribution of samples eventually converges toward a uniform distribution over Cfree

[LaV99].

The algorithm presented here reuses ideas from the planners presented in [HLM97]

and [LaV99] in combination with a greedy heuristic aimed at achieving rapid conver-

gence. Our goal in designing this planner was to build a method whose performance

scales roughly with our intuitive perception of the difficulty of the problem. Namely,

if a simple solution exists to a path planning problem, the planner should find it

very quickly (like a potential-field planner). If the problem is difficult (e.g. involves

traversing a narrow passage in the configuration space), the planner should still be

able to solve it though more computation time might then be required. Preliminary

experiments have shown good performance in a variety of planning situations (see

Section 5.6).

The RRT-Connect Planner

The path planning queries considered are of the standard form. Namely, we are given

an initial configuration qinit and a goal configuration qgoal in the configuration space C
of a robot or animated character. Our task is to find a collision-free path connecting

qinit and qgoal (i.e. any path lying entirely in Cfree, the open subset of collision-free

configurations in C, is considered a solution path). In this thesis, the RRT-Connect

heuristic is described for the holonomic case. However, with minor modification, the

same method could be applied to models with nonholonomic constraints by utilizing

the more general RRT construction algorithm given in [LaV99, LK99]. In either case,

the algorithm requires that a distance metric ρ be defined on C (i.e. the function

ρ(q1, q2) returns some measure of the distance between the pair of configurations q1

and q2). Some axes in C may be weighted relative to each other, but the general idea

is to measure the “closeness” of pairs of configurations with a scalar function.
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Growing a Tree

The fundamental operation of the algorithm is to grow a branch on a tree of connected

free configurations. The nodes in a tree lie at either a branching point, or at the end of

a terminal branch. Two nodes connected by a branch are connected by a collision-free

path. For simplicity, a straight-line path in C is used to make connections between

nodes, but any local connection method that is efficient to store and easy to compute

may be used.

At every iteration, the planner picks a configuration in C called the target config-

uration qtarget. Given qtarget and a tree T of connected free configurations, a branch is

grown on T towards qtarget. This operation is outlined in pseudocode in Procedure 1.

First, the node qnear in T that is “closest” to qtarget according the the distance metric

ρ is found. This is a standard nearest-neighbor query in computational geometry. A

brute-force approach might simply compute ρ relative to qtarget for all nodes in T
and return the minimum. This is a linear-time operation (at every iteration of the

planner) relative to the number of nodes in T . However, more efficient algorithms

exist, such as multi-dimensional k-d trees (for complete references, see [AMN+]).

Procedure 1 GrowTree(T , qtarget)

qnear ← NearestNeighbor(T , qtarget)
if ρ(qnear, qtarget) < dmax then

if Connect(qnear , qtarget) then

AddBranch(T , qnear, q)
return CONNECTION

end if

else

q ← GenerateNewNode(qtarget, qnear)
if Connect(qnear , q) then

AddBranch(T , qnear, q)
return SUCCESS

end if

end if

return FAILED

The node qnear becomes the root of a potential new branch in T . The endpoint

of the new branch is either qtarget, or an intermediate node along the straight-line
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Figure 5.4: Growing a branch towards qtarget.

path between qnear and qtarget, depending upon whether the distance between qnear

and qtarget is less than some maximum distance dmax. The constant dmax, is used

to prevent the algorithm from trying to locally connect very distant configurations,

since such an operation is expensive and will likely fail.1

If ρ(qnear, qtarget) is less than dmax, then the procedure Connect(qnear, qtarget) is

invoked in an attempt to build a straight-line path connecting qtarget directly to T . If

a path is found, a branch is added to T connecting qnear and qtarget. The result CON-

NECTION is returned, indicating that a direct connection was successfully made between

qtarget and T . Otherwise, the result FAILED is returned.

If ρ(qnear, qtarget) is greater than dmax, then the function GenerateNewNode(qnear, qtarget)

makes a motion toward qtarget at the fixed incremental distance dmax (Figure 5.4). This

produces an intermediate node q lying along the straight-line path in C between qnear and

qtarget. The node q becomes the endpoint of the potential new branch in T . The procedure

Connect(qnear, q) verifies that the path between qnear and q is collision-free. If so, a branch

is added to T connecting qnear and q, and the result code SUCCESS is returned. Otherwise,

the result code FAILED is returned.

1The constant dmax is the only parameter the planner requires. Its value should not be too small
nor too large relative to the size of an axis of C. In our experiments, we found that assigning dmax

a value between 3 to 5 percent of the width of an axis of C yielded satisfactory results.
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The Basic Planner

In order to generate a Rapidly-Exploring Random Tree (RRT), we simply initialize T with

a single node and repeatedly call GrowTree using target configurations that are uniform

samples of C. This simple procedure will create a tree that probabilistically converges

towards a uniform exploration of C[LaV99]. For path planning, we grow two trees starting

from both qinit and qgoal until a connection between the trees is established. We will refer

to this as the basic planner, which is outlined in Procedure 2.

Procedure 2 BasicPlanner(qinit, qgoal)

Tinit ← Initialize(qinit)
Tgoal ← Initialize(qgoal)
while time < Tmax do

q ← RandomConfig()
rinit ← GrowTree(Tinit, q)
rgoal ← GrowTree(Tinit, q)
if rinit = CONNECTION then

if rgoal = CONNECTION then

path← BuildPath(Tinit, Tgoal, q)
return path

end if

end if

end while

return NULL PATH

We begin by initializing the tree Tinit with the single node qinit, and the tree Tgoal with

the single node qgoal. We then invoke the main planning loop which consists of repeatedly

generating a random target configuration q by uniform sampling of C and growing both trees

towards the sample. The loop will terminate in one of two ways: either the time limit will

expire (in which case, the planner fails and no path is returned), or a connection between

the trees is established (and the path connecting qinit and qgoal is returned). A connection

between the trees occurs when the calls to GrowTree(Tinit, q) and GrowTree(Tgoal, q) both

return CONNECTION, indicating that the sample q was directly connected to both trees.

This means that Tinit and Tgoal are now connected via the node q. The planner succeeds

and the path between qinit and qgoal through q is returned.

The growth of Tinit and Tgoal can be thought of as two expanding wavefronts of explored

C-space. A path is formed between them whenever a sample is generated that is within a
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distance dmax from both trees and both local connection attempts succeed.

A desirable property of this planner, is that the distribution of nodes in the trees even-

tually converges toward the sampling distribution (which is uniform here) [LaV99]. This

means that the planner will eventually arrive at a uniform coverage of Cfree, which is also

a desirable property of the probabilistic roadmap planner. This property implies that if a

path exists between qinit and qgoal, the planner will eventually find it. Unfortunately, we

do not yet have a theoretical analysis of the convergence rate (which is observed to be fast

in practice).

The RRT-Connect Heuristic

This section modifies the basic planner described in the previous section by introducing a

simple greedy heuristic which we call the RRT-Connect heuristic. The goal of the heuristic

is to bias the expansion of nodes in the trees towards rapidly establishing a connection

between them.

There are two fundamental planner characteristics that we will focus on in designing

our heuristic:

1. For queries that admit simple solutions, the planner should solve them very quickly.

2. Overall probabilistic global convergence must be maintained (e.g. the heuristic should

not inadvertently cause the planner to become “trapped” by pathological cases.)

The key idea behind the RRT-Connect planner is to alter the basic planner as follows:

whenever a node is added to either of the trees, the planner attempts to continually grow

the other tree towards that node. As we shall soon see, this simple scheme serves to draw

the trees closer to each other and consequently more quickly find a path on average, while

preserving the required planning characteristics outlined previously.

Pseudocode for the algorithm is given in Procedure 3. Just as with the basic planner,

we begin by initializing the tree Tinit with the single node qinit, and the tree Tgoal with the

single node qgoal. We also initialize three variables, which will encode the current state of

the planner:

• qtarget keeps track of the current target configuration used for expanding the currently

active tree.
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Procedure 3 RRTConnectPlanner(qinit, qgoal)

/* initialization */
Tinit ← Initialize(qinit)
Tgoal ← Initialize(qgoal)
qtarget ← qgoal

Tactive ← Tinit

bias← TRUE

/* main planning loop */
while time < Tmax do

if bias then

result← GrowTree(Tactive, qtarget)
if result = CONNECTION then

path← BuildPath(Tinit, Tgoal, qtarget)
return path

end if

if result = FAILED then

bias← FALSE

end if

else

qtarget ← RandomConfig()
result← GrowTree(Tactive, qtarget)
if result 6= FAILED then

qtarget ← NodeAdded(Tactive)
bias← TRUE

end if

/* switch currently active tree */
if Tactive = Tinit then

Tactive ← Tgoal

else

Tactive ← Tinit

end if

end if

end while

/* planner failed */
return NULL PATH
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Figure 5.5: Basic Planner state diagram

• Tactive points to the currently active tree (either Tinit or Tgoal).

• bias is a boolean flag indicating whether the planner is currently growing towards a

recently added node in the opposite tree.

qtarget is initialized to the goal configuration, Tactive is initialized to point to Tinit, and the

flag bias is set to TRUE. Intuitively, these settings mean that the planner is initialized to

try and grow Tinit towards qgoal.

We then invoke the main planning loop which repeatedly performs one of two things

depending upon the value of the bias flag:

If bias is TRUE: We attempt to grow the currently active tree Tactive towards the current

target configuration qtarget. If a direct connection to qtarget is made (CONNECTION

is returned by GrowTree), then we have successfully connected Tinit and Tgoal, so we

assemble and return the path through qtarget. If GrowTree fails to grow a branch

(FAILED is returned), then bias is set to FALSE. Otherwise, if a branch was added

(but not a direct connection to qtarget), then by default, we continue to grow the

active tree towards qtarget.

If bias is FALSE: We generate a random target configuration by uniformly sampling C.
If GrowTree succeeds in adding a branch (either CONNECTION or SUCCESS is

returned), then qtarget is set to the node just added and the bias flag is set to TRUE.

Regardless of whether GrowTree succeeded or failed, we toggle the currently active

tree Tactive.

Another way to understand how the RRT-Connect planner works is to examine a state

diagram depicting its operation. First, consider the simple state diagram for the basic

planner shown in Figure 5.5. There are two states labeled I and G, corresponding to whether

Tinit or Tgoal is currently being expanded respectively. Regardless of whether the attempt
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Figure 5.6: RRT-Connect Planner state diagram

to grow a branch on the currently active tree is successful or not (Y or N), a transition is

made to the other state. Thus, the planner always alternates between attempting to grow

Tinit and Tgoal towards a randomly sampled configuration.

Now consider the state diagram for the RRT-Connect planner shown in Figure 5.6. The

same states I and G are present, but different transitions have been added along with two

new states Ibias and Gbias. These new states correspond to the bias flag being TRUE while

expanding Tinit or Tgoal respectively. The planner begins in state Ibias (expanding Tinit with

the bias flag TRUE and the target configuration equal to qgoal). If GrowTree successfully

adds a branch (the Y transition), then the planner remains in state Ibias and continues

to grow toward the current target configuration qtarget. Otherwise, it transitions to state

I (the N transition), which picks a random target configuration and attempts to grow a

branch. If it succeeds, it sets qtarget to be the recently added node, changes the active tree

to Tgoal, and transitions to state Gbias. Otherwise, it changes the active tree to Tgoal, and

transitions to state G, which attempts to grow towards a random target configuration, etc.

The other transitions in the diagram can be explained similarly.

Intuitively, for planning queries that admit a simple solution, the RRT-Connect planner

will spend most of its time in states Ibias and Gbias. For queries which encounter a lot

obstacles, the planner will spend more of its time in states I and G, thus behaving more
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like the basic planner randomly exploring Cfree. It should also be pointed out that there

is a computational advantage to being in either of the states Ibias and Gbias. Namely,

whenever a self-transition is made from either of these states, we can eliminate the need for

the nearest-neighbor calculation. The reason is that we already know that the node at the

end of the branch just added must be the closest node to qtarget. This usually provides a

modest savings depending upon the cost of computing ρ.

Path Smoothing

Both the basic and the RRT-Connect planner return the first path they find connecting

qinit and qgoal. These initial paths returned are usually not optimal with respect to ρ. For

example, if the initial path is used directly to animate the joints of the character, although

the motion will be continuous, it may appear slightly jerky. Any number of techniques

may be used to optimize or “smooth out” the initial solution path returned by the planner

(for example, see [Lat91]). In the experiments described here, a very simple smoothing

technique was used that iteratively selects random pairs of nearby configurations along the

path and attempts to connect them with a straight line in C. The process stops after a set

number of iterations fails to shorten the path. This method gave satisfactory results for

the purposes of experimentation, but other more sophisticated path optimization schemes

could be used in place of this method.

5.5 Task Animation

Arm Motions

This section describes how we utilize the RRT-Connect path planner from the previous

section to animate single-arm manipulation tasks for human figures. Through a graphical

user interface, an operator can interactively select an object, specify a target location, and

issue a move command. The planner will then attempt to compute three trajectories:

• Reach: Move the arm in position to grasp the object.

• Transfer : After grasping, move the object to the target location.

• Return: Once the object has been placed at the target location, release it and return

the arm to its rest position.
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If any of these steps should fail, the software sends an appropriate signal to execute a

contingency plan (e.g repositioning the torso and shoulder, or attempting to use the other

arm to complete the task).

Let us consider the steps necessary for generating a reaching motion (the transfer and

return motions involve almost the same set of steps). Each of the steps is listed along with

a brief description.

1. Task specification: A reaching task for a character A is specified by identifying

a target object O whose local reference frame Fobj has a global transformation Gobj

relative to Fworld.

2. Grasp Selection: A valid grasp g = (Tgrasp, qhand) is chosen from the set of grasps

for O that apply to the morphology of A. If more than one valid grasp for O exists,

all are evaluated and ranked according to accessibility and convenience (proximity to

the arms of A), and g is chosen as the highest ranking grasp. If the manipulation

plan fails using g, a plan using the next highest-ranking valid grasp is attempted.

3. Grasp Frame Computation: The local grasp transformation Tgrasp associated

with g is used to compute the global transformation Ggrasp = GobjTgrasp of the grasp

frame, Fgrasp. Fgrasp marks the precise location on the geometry of O where the task

frame of the arm should be placed (see Figure 5.7).

4. Arm Selection: The arm of A whose task frame Ftask is nearest to Fgrasp is des-

ignated for planning. If the plan fails, a plan using either the other arm or the next

valid grasp attempted.

5. Goal Configuration Computation: The inverse kinematics algorithm is invoked

to attempt to compute a collision-free arm configuration qgoal that aligns the task

frame Ftask with Fgrasp.

6. Path Planning: The current arm configuration is used as the initial configuration

qinit. The path planner is invoked to attempt to find a collision-free path connecting

qinit and qgoal. The hand configuration qhand associated with the grasp g is used for

collision-checking during planning.

7. Trajectory Generation: If the planner is successful, a motion trajectory τ for

the arm is generated by time parameterizing the path using an appropriate velocity
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grasp
frame

task
frame

Figure 5.7: An example task frame (left). The grasp frame for a coffee pot (right).

profile. In our implementation, we use a spline function for a velocity profile curve that

attempts to mimic the ease-in and ease-out concepts commonly used in traditional

animation [TJ95].

8. Final Grasp Adjustment: After the arm has reached qgoal, the finger joints are

iteratively modified to cause the hand to actually grasp the object (the joints are

incremented until the finger geometry makes contact withO). For example, Figure 5.8

contains snapshots of a human character grasping a flashlight on a shelf. The left

image shows the reaching motion and grasping approach at the end of the computed

path. The right image shows the grasping configuration after iteratively closing the

hand and finger joints.

Computing the transfer and return motions involve nearly the same set of steps as the

reaching motion, except for the following differences:

Transfer Motion: Move the object O to a target location.

1. The hand configuration remains fixed (grasping O) for the duration of the motion.

2. The geometry of O is added to the collision model of the hand for collision-checking

during path planning.
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Figure 5.8: Reaching for a flashlight (left), and finalizing the grasp (right).

3. The global transformation Ggrasp = GtargetTgrasp of Fgrasp is computed using the

global target transformation Gtarget. Gtarget represents the desired new location for

the object O.

Return Motion: Release O and return the arm to a resting position.

1. Prior to moving the arm, the joints of the fingers are iteratively modified to open the

hand, thereby releasing O.

2. The goal configuration qgoal is set to be a default rest configuration for the arm qrest,

rather than being computed via inverse kinematics.

Eye-Head Movements

Although the joints of the arm are of primary importance to the animation of grasping and

manipulation tasks, the other joints of the character cannot be simply ignored. Computed

motions look stiff and unnatural if the other joints of the body remain fixed. This is

particularly true if the neck, head, and eyes remain fixed. Based on the experiments we

have conducted, the naturalness of the animation can be greatly improved by using a simple

gaze function to coordinate the movements of the neck, head, and eyes.



118 CHAPTER 5. MANIPULATION TASKS
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Figure 5.9: The eye-neck kinematic chain

Neurophysiological Studies

Research in neurophysiology has revealed unique patterns of motor control techniques that

humans employ in coordinating eye and head movements. Given a visual target, the eyes and

head move simultaneously to form a stable directed gaze. Specifically, the eye movements

have the function of rotating the optic axis with respect to the head, such that the visual

target is either acquired or maintained in the central area of the retina[MT86].

The neck, head, and eyes form a kinematic chain as illustrated in Figure 5.9. The motion

of the eyes with respect to the environment is the cumulative transformation formed by the

sum of the eye rotation (with respect to the head), the head rotation (with respect to the

neck), and the neck rotation (with respect to the torso).

The movement of the eye-neck chain serves to facilitate the visual feedback necessary

for accuracy in executing a given task (hand-eye coordination). This implies a geometric

mapping between the “global” task point trajectory and the “internal” joint variables of

the eye-neck chain. In general, such a mapping is non-linear, but observations of real

humans have revealed an approximately linear mapping[MT86]. In addition, humans are

endowed with a special reflex called the vestibulo-ocular reflex (VOR), which is an automatic

mechanism that controls the eye rotations to compensate for voluntary or involuntary head

movements[MBD73]. This reflex reduces the mechanical coupling of the eye-neck chain,
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Figure 5.10: Eye and head coordinated movements for different relative target dis-
placements. The curves represent eye rotations (E), head rotations (H), and cumula-
tive gaze rotations (G = E + H). (Adapted from [Rob64])

thereby reducing the brain’s task of stabilizing the retinal images, and allowing the brain

to more effectively target the eyes towards a location in space.

Eye-Head Trajectories

When humans gaze at a visual target, the eyes quickly rotate to focus on the object while the

head (with the larger mass, and hence greater inertia) rotates towards the target to align the

visual baseline perpendicular to the line of sight. Perpendicular alignment tends to maximize

the accuracy of depth estimation by human stereo vision through the relative increase in

the effective length of the visual baseline. The VOR rotates the eyes to compensate for

the head movement. The initial small, rapid, jerky movements of the eye are known as

saccadic motion. The duration of human eye saccades, unlike motions in most other motor

subsystems, are not independent of the overall movement amplitude. Instead, they increase

monotonically with the amplitude[Rob64]. Figure 5.10 illustrates the relative timing of

simultaneous eye and head movements.

An Approximate Model

Based on the studies found in the neurophysiological literature, we have devised a simple

gaze function model to automatically compute appropriate eye-neck motions for grasping

and manipulation tasks. The gaze function is essentially an inverse kinematics algorithm

that attempts to mimic natural human gazing behavior for the purposes of animation.

We will denote the gaze function by gaze(p), where p is the point of interest, or the
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Figure 5.11: Frames of reference for the eye-neck chain.

vector location of the gaze target in the global environment frame. gaze(p) computes the

relative transformations of the neck, head, right eye, and left eye. Figure 5.11 depicts the

local frames for each of these links. For simplicity, all joints are modeled as spherical joints.

Given a point of interest p, the neck and head links are rotated to face p by a proportion

derived from the timing curves of Figure 5.10. At the start of the gaze motion, the neck

and the head are positioned at their current rotation (used as a reference rotation). The

neck frame N is rotated relative to the chest frame C, the head frame H is rotated relative

to N , and each of the eye frames (RE and LE) are rotated relative to H. The rotations

are computed as follows:

RN = η(wneck, Rref , γ(Cz ,p−No))

RH = η(whead, Rref , γ(Nz ,p−Ho))

RLE = γ(Hz,p− LEo)

RRE = γ(Hz,p−REo)

RN , RH , RLE , and RRE are the rotations of the neck, head, left eye, and right eye frames

respectively. η(w,R0, R1) is a function that returns an interpolated rotation between the

rotations R0 and R1 by the weighting factor w ∈ [0, 1]. Since our implementation uses

quaternions to represent rotations, a spherical linear interpolation (slerp) function is used
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[Sho85]. Rref is the reference rotation, and the weights wneck and whead is used to control

the amount of relative neck and head rotation. γ(a,b) is a function that returns a rotation

which maps the unit vector along a to the unit vector along b. Cz is the z-axis of the

chest frame in global coordinates (Nz and Hz are the z-axes of the neck and head frames

respectively). No is the position of the origin of the neck frame in global coordinates (Ho,

LEo, and REo are the origins of the head, left eye, and right eye frames).

To prevent illegal postures, as each of RN , RH , RLE , and RRE are computed, the

rotation is checked against the joint limits for the link. If the joint limits are violated, the

rotation is snapped to the nearest valid rotation. Joint limit violations typically only occur

if p is placed behind the character, very close to the character’s face, or near the vertical

or lateral extremes of the visual field.

For animating the head and eye movements of human characters performing manipula-

tion tasks, the gaze function is used with different points of interest for each of the three

motion stages. The relative timing of the eye saccades approximates the trajectories in

Figure 5.10 by varying the weights wneck and whead from 0 to 1 as the arm is animated.

The point of interest used for each stage is as follows:

• Reach: The location of the object O.

• Transfer : After grasping O, the destination (target) location for O.

• Return: Once O has been placed at the target location, a default point in the scene.

The default point of interest is used to allow the character to assume an idle gazing posture

(for example, looking straight ahead).

The motion of the head and eyes overlaps with the motion of the arm. Based on our

experiments, the gazing motion should begin at the same time or slightly precede the arm

motion for a more natural effect. Example images of manipulation task animation for

human characters using this gazing model are shown in the next section.

5.6 Results and Discussion

This section presents the results of an experimental implementation of the manipulation

task motion generation strategy for human characters presented in this chapter. We tested

the inverse kinematics, grasping, path planning, and human gaze model in an interactive
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Time (seconds) H/B
Example Basic Heuristic Ratio

Figure 5.12a 0.071 0.016 0.23
Figure 5.12b 0.262 0.174 0.66
Figure 5.12c 0.274 0.228 0.83
Figure 5.12d 0.552 0.534 0.96
Figure 5.13a 1.694 1.840 1.08
Figure 5.13b 1.817 1.628 0.90
Figure 5.13c 6.644 5.940 0.89
Figure 5.13d 23.751 26.339 1.10

Table 5.1: Planner comparison (N = 100)

application involving human characters. For path planning, we show experimental results

using both the basic planner and the RRT-Connect planner with a 7-DOF human arm

model, as well as a variety of other robots and environment geometries. The majority of

these experiments were conducted on a 200 MHz SGI Inidigo2 running Irix 6.2.

Basic Examples

For testing the path planning heuristic, we initially experimented by planning motions for

rigid objects in 2D. Both the basic planner and the RRT-Connect planner were given the

same queries and subjected to 100 trials each. The results were averaged and compared.

Representative runs for eight different examples based on the average performance statistics

are shown in Figure 5.12 and Figure 5.13. All of the examples in Figure 5.12 were solved

in less than one second, while those in Figure 5.13 took slightly longer2 (see Table 5.1 for

complete timing results).

Utilizing the heuristic resulted in as much as a 75 percent reduction in total collision

checks and nodes explored for simple queries. This translated into a similar percentage

decrease in total execution time, since collision checking and nearest-neighbor calculations

dominate the computation. As expected, the advantage of using the heuristic is especially

apparent for queries that admit a very simple solution. This is the primary motivation for

2For uniformity in answering planning queries, our current implementation performs all collision
checking in 3D. Thus, collision checking in the 2D examples is actually performed using 3D models
that are constrained to lie in a plane. Using 2D polygon-based collision checking software could have
significantly improved our raw performance data, but these experiments were designed primarily for
making a relative comparison test.
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Basic Planner RRT-Connect Final Path

(a)

(b)

(c)

(d)

Figure 5.12: Basic vs. RRT-Connect heuristic. Simple queries for a translating 2D
rigid body.
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Basic Planner RRT-Connect Final Path

(a)

(b)

(c)

(d)

Figure 5.13: More challenging queries for a translating 2D rigid body.



5.6. RESULTS AND DISCUSSION 125

developing this heuristic in the context of animating manipulation motions. The majority

of grasping and manipulation tasks typically involve fairly large regions of free space. It is

these types of spaces that the heuristic generally performs well in.

Consider example (a) in Figure 5.12 involving a wide-open space. Like most planners

based on potential-fields, the heuristic immediately connects the start and the goal. Exam-

ples (b) and (c) involve slightly more obstructing obstacles. The planner begins to explore

the surrounding space as obstacles are encountered, while simultaneously rapidly converging

towards the goal. In addition, the nature of the construction of the RRTs tends to prevent

samples from accumulating in regions of previously explored space. Intuitively, RRTs can

be thought of as randomized Voronoi diagrams, where large Voronoi regions are more likely

to be sampled[LaV99].

More Complex Examples

A few more challenging queries are shown in Figure 5.13. The first example (a) involves a

twisty maze with a long solution path, while the next three examples involve various forms

of narrow passages, which are generally considered to be the most difficult queries for path

planning[HKL+98]. In these examples, the robot is a square whose side length measures 0.04

of the diameter of the space. The passage at its narrowest measures 0.05 of the diameter.

In examples (a) and (d), the basic planner performed slightly better on average (between

5 to 10 percent). These examples were purposefully designed to be disadvantageous to

the heuristic. Intuitively, the heuristic will likely reduce performance if the solution path

is very twisty, or if the trees must initially grow in opposite directions before eventually

coming together. Based on our experiments, the potential computational gain by utilizing

the heuristic can be quite large, while the potential risk is relatively small.

Figure 5.14 shows the the result of using the RRT-Connect planner to compute a motion

to move an L-shaped object through a set of narrow gates. The exploration tree on the

left is the 2D projection of the actual tree which resides in a 3-dimensional C-space. The

right image shows the final path after smoothing. Figure 5.15 depicts the same planner as

applied to a 3D model of a grand piano moving from one room to another amidst walls and

low obstacles. Several tricky rotations are required of the piano in order to solve this query.

Before applying the planner to a human arm model, experiments were conducted plan-

ning manipulation motions for a model of a 6-DOF Puma industrial manipulator arm. For
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Figure 5.14: The RRTs (left) and computed path (right) for an L-shaped rigid body
in 2D.

computing goal configurations, an analytical inverse kinematics algorithm is used. Several

snapshots of a path to move a book from the middle shelf to the bottom shelf of a desk is

shown in Figure 5.16.

For the queries we tested, motions were computed in a few seconds on average. Inter-

active applications such as this could become a potential useful tool for the visualization of

robotic systems, as well as an automated, task-level programming interface for manipulator

robots.

Human Arm Animation

Experiments using the planner to generate manipulation motions for human arms were

conducted. Through a graphical user interface, an animator can interactively click and

drag an object to a target location and issue a move command. The planner will then

attempt to compute the motions to reach the object, grasp it, transfer it to the target

location, release it, and return the arm to its rest state.

Figure 5.17 shows a human character commanded to move a bottle while seated. This

sequence of motions involves two calls to the inverse kinematics solver, and three path

planning queries. Traces of the computed paths are shown in the images. The motion of
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Figure 5.15: Moving a piano in a room with walls and low obstacles.



128 CHAPTER 5. MANIPULATION TASKS

Figure 5.16: A 6-DOF Puma robot moving a book.
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the neck, head, and eyes are computed using the approximate gaze model of Section 5.5.

All motions were computed in under 2 seconds on a 200 MHz SGI Indigo2 running

Irix 6.2. The human arm is modeled as a 7-DOF kinematic chain, and the entire scene

contains over 12,000 triangle primitives. The 3D collision checking software used for these

experiments was the RAPID library based on OBB-Trees developed by the University of

North Carolina[GLM96].

As mentioned previously, the RRT-Connect heuristic works most effectively when one

can expect relatively open spaces for the majority of the planning queries. Figure 5.18

shows a human character playing chess. Each of the motions necessary to reach, grasp, and

reposition a game piece on the virtual chessboard were generated using the RRT-Connect

planner in an average of 2 seconds on a 200 MHz SGI Inidigo2. The scene contains over 8,000

triangle primitives. The user can interact with the character in real-time, and even engage

in a game of “virtual chess”, since the manipulation task commands can be constructed

automatically from moves issued by chess-playing software.

This planner works extremely well for tasks such as moving game pieces around, since

there is a relatively large amount of free space in which to move the arm. However, it can

also handle more complicated queries with narrow passages in C-space, such as the assembly

maintenance scene depicted in Figure 5.19. Here, the task is to grasp the tool from within

the box and place it inside the tractor wheel housing. Solving this particular set of queries

takes an average of 80 seconds on an SGI Indigo2, and about 15 seconds on a high-end SGI

(R10000 processor). The scene contains over 13,000 triangles.

Discussion

For planning single-arm manipulation tasks for human characters, we have proposed a

motion generation strategy that relies primarily on inverse kinematics and path planning

software. For path planning, two planner variants are proposed. In particular, we have

developed the RRT-Connect heuristic which improves the overall convergence and speed at

which we can answer many types of path planning queries. There are several important

characteristics of this method that are worth considering:

1. No pre-processing: The planner was developed to be able to quickly answer single

queries in dynamic virtual environments where both obstacles and the character itself
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1) Reach

5) Return

2) Grab

4) Release

3) Transfer

Figure 5.17: A human character repositioning a bottle.
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Figure 5.18: Playing a game of virtual chess.
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Figure 5.19: A more difficult planning query.
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are non-stationary (thus changing the shape of Cfree and precluding the use of pre-

processing).

2. Rapid Convergence: The heuristic was designed to attempt to quickly establish

a connection between the two search trees. The time taken to solve a particular

query generally scales with the relative complexity of the solution path induced by

the geometry of Cfree.

3. Uniform Exploration: The planner utilizes RRTs to explore the surrounding free

space, while simultaneously being pulled towards establishing a connection between

the trees. Intuitively, being drawn towards different individual nodes in the opposing

tree at different times, is like having a potential field that moves around to different

areas of Cfree rather than remaining fixed at the goal.

4. No “magic” numbers: Rather than having multiple parameters to tweak, this

planner is simple and requires only a single parameter to be specified (the value of

dmax). This facilitates ease of implementation and consistency in performance eval-

uation. In fact, it may even be possible to slightly modify the planner to adaptively

select the value of dmax according to how successful the planner is at adding branches.

If it is often successful, it may try to increase dmax (optimism), while if it often fails,

it may decide to decrease dmax (cautiousness).

5. Relatively short paths: The raw paths (prior to smoothing) generated by the

planner, though slightly jagged, are relatively short. This is likely due to the fact

that RRTs grow with a very low probability of producing paths that spiral or cross

themselves.

In the context of the particular application that this planner was developed for (the auto-

matic animation of manipulation tasks), it is now possible to generate complex manipulation

motions for animated human figures at interactive rates.

Although the planner has been observed to be efficient and reliable in practice, theoret-

ical analysis of the convergence rate remains to be done. In our current implementation, a

predefined maximum execution time limit is used after which the planner returns failure.

Thus, the planner is not complete, meaning that when it fails, it cannot guarantee that a

path does not exist, only that it was unable to find one in the time allotted. Designing a

complete planner is possible [Can88], but known practical planning methods for high-DOF
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configuration spaces are not complete. Analyzing the conditions under which the planner

performs poorly (as in [BKL+97]), is an area of future research.

Overall, we have found the motions generated by the planner to be quite satisfactory.

However, the motion generation strategy could be improved in a number of important

ways. Each of the following paragraphs outlines one of several of these issues, along with a

discussion of potential methods for improvement.

More Flexible Inverse Kinematics

In our experiments, we assume that the torso and shoulder position remains fixed for the

duration of the manipulation motion. This assumption is reasonable for manipulation tasks

involving relatively small, nearby objects. However, other tasks require the use of additional

degrees of freedom in the shoulder, torso, or legs.

Incorporating these additional degrees of freedom into the path planner itself is rel-

atively straightforward, as we expect the RRT-Connect heuristic planner to scale well to

higher-DOF configuration spaces. The primary effort that must be made involves modifying

the inverse kinematics algorithm to take these additional degrees of freedom into account.

Having such capability in the IK solver would certainly be a useful extension to the current

implementation.

Multi-arm Manipulation Tasks

This chapter considers only manipulation tasks that can be accomplished by a single arm.

However, tasks involving objects that require multiple arms are numerous. Extending the

planner to compute multi-arm motions is a necessary next step to enlarging the set of tasks

that can be handled by the planner. Incorporating techniques from Koga, et al.[KKKL94a]

is one possibility.

Automatic Grasp Generation

Currently, we assume that a valid set of grasps for a particular character morphology is

pre-specified by an animator and associated with an individual object (or class of objects

with similar geometry). Other similar methods for storing information about how a virtual

object should be manipulated (such as grasp locations) along with the object itself have
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been developed [GLM94, KT99]. Although the labor of specifying valid grasps for an object

need only be performed once, it is a requirement that we would like to avoid.

Calculating a set of possible grasps automatically from an object’s geometry is a com-

plicated problem, and has been addressed in the robotics literature (see [PT89] for a survey

of this work). Adapting some of these techniques to automate the generation of grasp sets

for animated human figures based on the geometric or physical properties of a virtual object

would be very useful.

“Naturalness” Constraints

The planner described in this chapter enforces no “naturalness” constraints during planning

in order to guarantee that the generated motion appears natural. The naturalness of the goal

pose is primarily due to the inverse kinematics algorithm. The intermediate poses, although

unconstrained, generally appear natural perhaps because the path optimization technique

shortens paths in the configuration space according to the distance metric. Depending upon

the nature of the distance metric, this may tend to generate paths that seem to be fairly

“efficient”, and therefore perhaps likely to be close to how an actual human might move in a

similar situation. However, more experimental work is needed to determine better methods

of producing natural-looking trajectories (for example, see [FH85].)

One fairly simple improvement to the planner would be to bias the sampling of Cfree to

favor arm configurations that appear natural. For example, the IK algorithm could poten-

tially be used to rate a sampled configuration in terms of “naturalness”. The probability of

retaining a sample during planning would depend on its rating. Thus, one could penalize

unnatural postures during the search.

Task-Based Constraints

In addition to maintaining a natural arm posture, other constraints could potentially be

taken into account during planning. For example, suppose the task is to move a glass of

water. This task has the added constraint that the glass should be kept vertical during

the arm motion to prevent the contents from spilling. As with naturalness constraints, the

planner could be biased to favor arm configurations that result in vertically upright glass

positions. Sampled configurations that result in horizontal or inverted glass positions would

be either discarded or retained with very low probability.
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Physically-Based Constraints

The majority of animation research for human characters has been performed at the level

of kinematics. Recently, there has been an upsurge in interest in physically-based models as

the increase in computing power has allowed fairly sophisticated simulations to be calculated

at interactive rates. Although some preliminary work has been done to apply physically-

based or biomechanical models to animating human figures [LWZB90, PW99, LM99], such

techniques have not yet been applied to generating physically-correct motion for complex

object manipulation tasks.

As with task-based constraints, the physics of the arm motions and the strength limi-

tations of the arm muscles could potentially be used to formulate additional search criteria

during planning. Motion planning that considers the dynamics of the system is sometimes

referred to as kinodynamic planning. Though some work has been done on kinodynamic

planning[O’D87, DXCR93, DX95, LK99], none has considered complex models such as

human figures. Given a biomechanical model of a human arm, it may be possible to auto-

matically plan physically-correct motions.

Researchers in human motor control and analysis have had limited success in devising

general models of human muscle activation patterns. There is even more ambiguity in

relating patterns of muscle forces to task frame trajectories than in relating kinematic

trajectories in the joint space to task frame trajectories [JvdGG89, ZG89]. The problem is

ill-posed since the degrees of freedom (muscles controls) are even more excessive (redundant)

than in the strictly kinematic case. For example, there are two major muscle groups whose

contraction affects the elbow flexion degree of freedom. Moreover, the moment arm lengths

and lines of force for these muscle groups actually vary as the elbow bends[CA91]. Despite

this, it may be possible to devise an approximate model for producing reasonable motions.

More experimental work is needed to determine whether kinodynamic planning tech-

niques using biomechanical models can be adapted for the purposes of computer animation.

Realistic Velocity Profiles

In our current implementation, we use a simple spline function to generate a time param-

eterized trajectory from the path returned by the planner. However, one could potentially

generate more realistic velocity profiles based on studies of human movement [AH84]. Some
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have suggested generating expressive animation using velocity profiles based on Laban move-

ment analysis[BCC99]. Alternatively, using an appropriate physically-based model of the

human arm, a physically-correct time-optimal trajectory along the planned path can be

computed [BDG85]. In combination with a variational technique and an appropriate cost

function, a purely kinematic path can be made to satisfy dynamic or naturalness constraints

[SD91]. These or similar methods could potentially be used to increase the realism of the

computed motion, especially if a manipulation task involves moving a heavy object.

Visual and Tactile Feedback

The motion generation strategy presented in this chapter does not utilize any sensory infor-

mation during planning. It is a purely geometric planner that considers only the shape of

the character, the object, and the environment when constructing a motion plan. However,

real humans use both visual and tactile feedback extensively when performing manipulation

tasks. By combining the gaze function derived in this chapter with the simulated vision

module of Chapter 4, one could potentially design a manipulation task planner that incor-

porated rudimentary visual feedback. At the beginning, the planner could verify that the

object is actually visible before attempting to grasp it (see Section 4.6). If the object is

not visible, the character could attempt to reposition itself or initiate a searching behav-

ior. During the arm motion itself, simulated visual feedback could be used to simulate the

hand-eye coordination of real humans.

Simulated tactile sensing is appropriate for manipulation tasks which fundamentally

involve contacts between a character and an object. Ultimately, a character could utilize

both visual and tactile feedback for manipulating objects, as do some industrial robots.

For example, a physically-based muscle model of the arm could be used to servo the hand

using visual feedback until the simulated sense of touch indicates contact with the object.

Adopting this kind of manipulation model could also potentially automate the generation

of natural motions for the head and eyes, as the character moves to maintain the visibility

of the object in the center of its visual field.
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Chapter 6

High-Level Behaviors

6.1 Introduction

For the purposes of creating interesting animations for autonomous characters, some degree

of high-level scripting of a character’s behavior is needed. The general idea is to aggregate

several lower-level task commands using a logical scripting language, in order to create a

script (program) that defines a higher-level behavior.

This chapter describes how more complex high-level behaviors for animated characters

can be constructed. The concepts are illustrated with simple scripted examples that have

been implemented and integrated with the task-level navigation and manipulation planners

presented in Chapter 3 and Chapter 5 respectively. The examples are discussed along with

a summary discussion.

6.2 Programming Behaviors

Scripting Languages

High-level behaviors for animated characters are typically defined via scripts written in

a scripting language. Many commercial applications (such as video games) employ some

kind of scripting system for animating complex behaviors. Various researchers have also

proposed different kinds of scripting systems for designing animated agents (for example,

the PAT-nets and SCA loops of U. Penn [BWB+95], Funge’s CML scripts [Fun98], and
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the Improv system at NYU [PG96] which uses non-deterministic scripts). Although some

systems make complex behaviors easier to program than other, all generally offer the same

functionality. This is evident by the fact that any given scripting system can typically be

programmed to emulate (simulate the behavior of) any other scripting system.

At a minimum, a scripting language should provide the ability to loop, perform condi-

tional branches, and invoke commands for executing atomic tasks. The ability to invoke

other scripts (possibly passing parameters to them) is not necessary, but very convenient

for modularizing behaviors.

Atomic tasks are either low-level motor commands, high-level task commands (such as

“moveTo”, “getObject”, “touchObject”, etc), or commands to initiate the playback of a

pre-defined motion, such as waving hello to another character (see Section 2.4). A script

can define not only a sequence of atomic tasks that make up a more complex behavior,

but also the logical relationships and conditions under which the atomic tasks should be

performed.

System Integration

Communication between a scripting language and an animation system is accomplished via

what we shall refer to here as sensors (“inputs”) and actions (“outputs”). Sensors serve as

feedback channels, providing abstract representations of what the character perceives in the

environment. Actions correspond to atomic actions that can be performed by the character.

Using the data provided by sensors in conditional branches facilitates the ability to alter

a character’s actions depending upon what the character perceives in its environment. As a

consequence, even very simple scripts with sensing feedback can yield quite complex behav-

iors and interactions between characters. This feedback loop corresponds to the practical

implementation of the control loop of the “virtual robot”.

The Generality of Scripting

With the necessary sensors and actions accessible through a scripting language, scripts are

a fully-general method of programming a character. There is often conceptually no limit

to the complexity of a script that may be defined (though limitations to their ability to be

practically implemented may exist). Thus, even a very complicated behavior-based model

can generally be simulated using a simple scripting language.
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Some researchers have argued that parallel computation will fundamentally alter the

abilities of software agents. In fact, parallelism itself does not provide any computational

advantage, since any parallel machine can be simulated by a single-processor serial machine.

However, the improved performance due to parallelism may enable algorithms that are too

slow for serial machines to become practical.

6.3 Following and Pursuit Behaviors

Using a navigation algorithm as a scriptable action, interesting animations involving mul-

tiple characters can be created. For example, simply setting the navigation goal of one

character to be the sensed location of another character immediately yields following or

pursuit behavior.

We have created several example scripted behaviors using the navigation strategy pre-

sented in Chapter 3. Figure 6.1 shows an example involving two characters that have been

scripted to follow another character that is under user control (in the foreground). The

actual script executed is shown in Figure 6.2. Because path planning is used for navigation,

the character will naturally circumvent obstacles while following the target character.

There are several possible strategies for avoiding collisions between characters. One sim-

ple idea is have each character “plan around” the others. For example, we can project the

geometry of the other characters at their current locations prior to obstacle growth. Since

each character may change its location over time, replanning may be necessary periodically

in order to avoid the possibility of a collision between two characters. One simple coordi-

nation scheme might replan whenever other moving characters cross a character’s current

path.

More sophisticated schemes that account for character velocities are also possible. In-

stead of planning around the other characters at their current positions, each character

could plan around the other characters’ predicted future positions. A character’s future

position could be calculated by a simple extrapolation of its current actual or estimated

velocity. The examples shown in Figure 3.12, Figure 3.13, and those in Figure 6.1 and

Figure 6.4 utilize this technique in order to avoid potential inter-character collisions.

Increasingly complex animations can be constructed by building upon existing behav-

iors. For example, given the following (pursuit) behavior, it is quite simple to script several

characters to play a game of tag, where one character who is “it” pursues nearby characters,
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Figure 6.1: Two human characters scripted to follow another human character under
user control.

while (TRUE) {

if (! nearCharacter(target, 1.7))

moveTo(target, 1.5);

else

stop();

}

Figure 6.2: An example following (pursuit) script.



6.3. FOLLOWING AND PURSUIT BEHAVIORS 143

Figure 6.3: An scenario involving wandering and following behaviors for human and
robot characters.

while the others attempt to flee.

Figure 6.3 and Figure 6.4 show examples involving seven characters (three humans and

four robots) in different scenarios. In Figure 6.3, two human character are scripted to follow

the other human character (which is under user control), while the robots are instructed

to wander and follow any human that passes nearby. In Figure 6.4, all of the characters

are instructed to pursue a single character under user control. Besides being applicable as

a general pursuit behavior for video games, it can be used to animate a crowd following a

leader (e.g. a virtual tour guide leading a group of virtual tourists).
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Figure 6.4: A group of characters scripted to pursue a user-controlled character.

6.4 Integrating Navigation and Manipulation

Given the two fundamental atomic task commands “moveTo” (navigation) and “getObject”

(manipulation), one can script high-level behaviors that involve picking up and moving

objects around. First, the navigation planner can be used to plan a motion for the character

to move near a desired object. Then, the manipulation planner can be invoked to grasp

and pick up the object.

For example, one could create a cleaning behavior for a virtual park employee in which

the character wanders around picking up any litter it walks near. By utilizing the synthetic

vision module of Chapter 4, the basic cleaning behavior could be modified to only pick

up objects that the character actually sees. Synthetic vision could also be used to create

a script that controls the character to actively look for litter instead of pure wandering.

Modularizing behaviors (such a cleaning behaviors), allows us to integrate the behavior as

a subgoal for more complex actions. For example, an autonomous waiter in a virtual cafe
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could roam around tables filling the patrons’ cups of coffee, but if he happens to see some

litter, the cleaning behavior can be invoked.

In the same way that a vast library of clip motions could potentially be used to animate

specific tasks, a vast library of behaviors could be developed over time and provided as

a resource to animators. As the number and complexity of the behaviors increases, the

perceived “intelligence” of the the animated agents will likely also increase accordingly.
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Chapter 7

Conclusion

The fundamental challenges in computer graphics and animation lie primarily in having to

deal with complex geometric, kinematic, and physical models. The development of better

software tools has advanced the state of the art in the modeling and rendering of these mod-

els. However, software tools for the automatic generation of motion are still relatively scarce.

In particular, techniques are needed to animate both autonomous and user-controlled hu-

man figures naturally and realistically in response to high-level task commands.

The preceding chapters of this thesis have presented a research framework aimed at

facilitating the high-level control of animated characters in interactive virtual environments.

The next section briefly summarizes the key ideas contained in this thesis, and the following

section contains a concluding discussion.

Summary

We approach the problem of automatically synthesizing motions for animated characters

from the standpoint of modelling and controlling a “virtual robot” (an autonomous ani-

mated agent). We propose a general architecture for autonomous animated agents based

on planning, sensing, and control. To test the viability of this approach, we have devel-

oped techniques for automatically generating the gross body motions for animated human

figures given high-level navigation or manipulation task commands. Although we have con-

centrated on the animation of human-like character models, the basic ideas are applicable

to other types of characters.
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Goal-directed Navigation: We present a technique for quickly synthesizing collision-

free motions for animated human figures given high-level navigation tasks amidst obstacles

in changing virtual environments. The method combines a fast 2D path planner, a path-

following controller, and uses cyclic motion capture data to generate the underlying anima-

tion. In order to provide a feedback loop to the overall navigation strategy, we incorporate

an approximate synthetic vision module for simulating the visual perception of the charac-

ter. It uses rendering hardware to quickly identify the objects visible to the character, along

with a simple model for representing and updating a character’s spatial memory. The model

is efficient in both storage requirements and update times, and can be flexibly combined

with a variety of higher-level reasoning modules or complex memory rules. Using such a

sensing and memory model, a character can be made to explore in real-time an unknown

environment, and incrementally build its own internal model of the world while it navigates

toward a goal location.

Object Manipulation: We introduce a new manipulation planner designed for effi-

ciently generating collision-free motions for single-arm manipulation tasks given high-level

commands. For moving an object, the planner automatically generates the motions nec-

essary for a human arm to reach and grasp the object, reposition it, and return the arm

to rest. The planner searches the configuration space of the arm, modeled as a kinematic

chain with seven degrees of freedom. Goal configurations for the arm are computed using

an inverse kinematics algorithm that attempts to select a natural posture. To compute

a collision-free path connecting the arm initial configuration to the goal configuration, we

present an efficient, general path planning approach RRT-Connect. The planner grows two

rapidly-exploring random trees (RRTs) in the configuration space and employs a simple

greedy heuristic that aggressively attempts to establish a connection between the trees.

This heuristic is demonstrated to be well-suited to generating motions for manipulation

tasks commonly faced by human characters. For increased naturalness, we also present an

approximate technique for coordinating the head and eye movements in conjunction with

the arm motions.

For testing and evaluation purposes, we have designed an experimental implementation

of the navigation and manipulation motion generation strategies and integrated them into

an interactive application involving human characters. Though many improvements can be
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made, the generated animation looks fairly realistic.

Discussion

Nearly all known motion generation techniques developed in the graphics and robotics liter-

ature can be unified under a common framework by viewing the motion synthesis problem

as one whose solution involves two fundamental tools: model-building and search. Specif-

ically, solving a motion synthesis problem almost always involves constructing a suitable

model and searching an appropriate space of possibilities. At present, no single motion syn-

thesis strategy can adequately handle the variety of tasks that can arise. Instead, different

tools and techniques can be used in combination and tailored to meet the requirements of

specific tasks. We believe that assembling a library of algorithms and motion data libraries

under the unifying framework of an animated agent will help to facilitate the development

of autonomous characters with realistic motions and behaviors.

In the future, interactive virtual environments will be populated by lifelike autonomous

characters. For offline animation applications, smarter software will alleviate the heavy

burden of key-framing motions for complex characters. Next generation cinematographers

will direct virtual humans in virtual scenes in much the same way as they direct real human

actors. Ultimately, the dream of virtual reality may be fully realized, in which artificial

scenes can be created that are indistinguishable from real life. In a sense, virtual reality

defines a kind of “Turing Test” for animated agents (i.e. whether or not a user can distinguish

animated agents from living people).

Let us consider for a moment some of the software technology and components necessary

for realizing truly lifelike characters. Clearly, visual realism will involve both sophisticated

graphical models as well as motions. For human characters, expressive facial animation

using realistic skin models, and flexible models of hair and clothing that move in response

to body motions will likely be important. In addition to having a realistic appearance,

lifelike human characters will move fluidly and naturally, and exhibit believable behavior.

Besides the characters themselves, the virtual world they inhabit will also be lifelike.

Since the real world is driven by the laws of physics, physically-based models will form an

integral part of any attempt to realistically simulate humans in the real world. Even now,

increases in computing power have allowed fairly sophisticated dynamic simulations to be

calculated at interactive rates. Assuming that Moore’s Law holds true, we can expect that
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future animation software will embody the laws of physics, and facilitate complex dynamic

simulations. Given these advances, it is therefore natural to ask whether the fundamental

problem of task-level motion control for human figures should be reformulated. Instead of

trying to find a set of joint functions that solve a particular task, we should find a set of

controls (i.e. muscle activation patterns) that solve the task. Ultimately, this could lead to

a new representation of motions: control functions (forces and torques), instead of purely

kinematic functions of joint variables.

For true believability, an autonomous character should exhibit realistic behavior. This

implies that the character is capable of emulating some of the higher-level cognitive functions

of real humans. This includes logical deduction and reasoning, adapting to changes in the

environment, and learning from mistakes. Thus, an artificial life approach to animation

that integrates perception, machine learning, and knowledge representation will likely be

needed.

As mentioned in Chapter 2, the goal of building believable autonomous animated agents

(virtual robots) shares much in common with efforts to build intelligent physical robots.

However, a virtual robot has numerous advantages over a physical robot. While a physical

robot must contend with the problems of uncertainty and errors in sensing and control, a

virtual robot enjoys “perfect” control and sensing. This means that it should be easier to

design an animated agent that behaves intelligently, than a physical agent that does so. In

some sense, creating an intelligent autonomous animated agent can be viewed as a necessary

step along the way towards creating an intelligent autonomous physical robot. If we cannot

create a robot that behaves intelligently in simulation, it is unlikely that we will be able

to create a robot that behaves intelligently in the real world. Thus, the “grand vision” for

animated agents encompasses many of the long-term goals for artificial intelligence.

At the present time however, we have a more modest objective: the animation of lifelike

autonomous characters for video games, animated films, and interactive simulations. Since

these applications do not always require perfectly realistic motions, this more modest goal

should conceivably be easier to achieve relative to the “grand vision”. In any case, we

believe that applications involving autonomous characters will continue to increase both

in number and in sophistication as software and hardware technology improves. Clearly,

many challenging research issues must be addressed before the dream of fully autonomous

animated agents can be realized.
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[KŠLO96] L. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration space. IEEE

Trans. on Robotics and Automation, 12(4):566–580, 1996.

[KT99] M. Kallmann and D. Thalmann. A behavioral interface to simulate agent-

object interactions in real time. In In Proceedings of CA ’99 : IEEE Interna-

tional Conference on Computer Animation., pages 138–146, Geneva, Switzer-

land, May 1999.

[Kuf98] J. J. Kuffner, Jr. Goal-directed navigation for animated characters using real-

time path planning and control. In Proc. of CAPTECH ’98 : Workshop on

Modelling and Motion Capture Techniques for Virtual Environments. Springer-

Verlag, November 1998.



REFERENCES 161

[Lat91] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,

MA, 1991.

[Lat93] Mark L. Latash. Control of Human Movement. Human Kinetics Publishers,

Champaign, IL, 1993.

[LaV99] S.M. LaValle. Rapidly-exploring random trees : A new tool for path planning.

Preliminary manuscript available at http://janowiec.cs.iastate.edu/~lavalle/,

1999.

[LGC94] Z. Liu, S. J. Gortler, and F. C. Cohen. Hierachical spacetime control. In Proc.

SIGGRAPH ’94, pages 35–42, 1994.

[LK99] S.M. Lavalle and J.J Kuffner. Randomized kinodynamic planning. In Proc. of

the IEEE International Conf. on Robotics and Automation (ICRA’99), Detroit,

MI, May 1999.

[LM99] J. Lo and D. Metaxas. Recursive dynamics and optimal control techniques for

human motion planning. In In Proceedings of CA ’99 : IEEE International

Conference on Computer Animation., pages 220–234, Geneva, Switzerland,

May 1999.

[LP83] T. Lozano-Perez. Spatial planning: A configuration space approach. IEEE

Transactions on Computers, C-32(2):108–120, February 1983.

[LPW79] T. Lozano-Perez and M.A. Wesley. An algorithm for planning collision-free

paths among polyhedral obstacles. Communications of the ACM, 22(10):560–

570, October 1979.

[LRDG90] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time robot

motion planning using rasterizing computer graphics hardware. In Proc. SIG-

GRAPH ’90, 1990.

[LWZB90] P. Lee, S. Wei, J. Zhao, and N. Badler. Strength guided motion. In Proc

SIGGRAPH ’90, volume 24, pages 253–262, 1990.

[Lyn93] K.M. Lynch. Planning pushing paths. In In Proc. of JSME Int. Conf. Advanced

Mechatronics, pages 451–456, Tokyo, Japan, 1993.



162 REFERENCES

[Mai96] R. Maiocchi. 3-D character animation using motion capture, chapter 1, pages

10–39. Prentice-Hall, London, 1996.

[MBD73] P. Morasso, E. Bizzi, and J. Dichgans. Adjustment of saccade characteristics

during eye head movements. Exper. Brain Research, 16:548–562, 1973.

[Mir96] B. Mirtich. Impulse-Based Dynamic Simulation of Rigid Body Systems. PhD

thesis, University of California, Berkeley, CA, 1996.

[Mit97] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[Mit98] J.S.B. Mitchell. Handbook of Computational Geometry, chapter Geometric

Shortest Paths and Network Optimization. Elsevier Science, 1998.

[MT86] P. Morasso and V. Tagliasco, editors. Human Movement Understanding: from

computational geometry to artificial intelligence. North-Holland, 1986.

[MTBP95] P. Maes, D. Trevor, B. Blumberg, and A. Pentland. The ALIVE system full-

body interaction with autonomous agents. In Computer Animation ’95, April

1995.

[MZ90] M. McKenna and D. Zeltzer. Dynamic simulation of autonomous legged loco-

motion. In Proc. SIGGRAPH ’90, pages 29–38, 1990.

[Nay92] B. Naylor. Partitioning tree image representation and generation from 3d

geometric models. In Proceedings of Graphics Interface ’92, pages 201–212,

May 1992.

[Nil80] N.J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, CA, 1980.

[NM93] J. T. Ngo and J. Marks. Spacetime constraints revisited. In Proc. SIGGRAPH

’93, pages 343–350, 1993.

[NRTT95] H. Noser, O. Renault, D. Thalmann, and N. Magnenat Thalmann. Navigation

for digital actors based on synthetic vision, memory and learning. Comput.

Graphics, 19:7–19, 1995.

[NT95] H. Noser and D. Thalmann. Synthetic vision and audition for digital actors.

In Proc. Eurographics ’95, 1995.



REFERENCES 163

[O’D87] C. O’Dunlaing. Motion planning with inertial constraints. Algorithmica,

2(4):431–475, 1987.

[OK94] C.W.A.M. Van Overveld and H. Ko. Small steps for mankind: Towards a

kinematically-driven dynamic simulation of curved path walking. The Journal

of Visualization and Computer Animation, 5:143–165, 1994.

[Ove92] M. Overmars. A random approach to motion planning. Technical report, Dept.

Computer Science, Utrect University, Utrect, The Netherlands, October 1992.

[Per95] K. Perlin. Real time responsive animation with personality. IEEE Transactions

on Visualization and Computer Graphics, 1(1):5–15, March 1995. ISSN 1077-

2626.

[PG96] K. Perlin and A. Goldberg. IMPROV: A system for scripting interactive actors

in virtual worlds. In Holly Rushmeier, editor, Proc. SIGGRAPH ’96, Annual

Conference Series, pages 205–216. ACM SIGGRAPH, Addison Wesley, 1996.

[PT89] J. Pertin-Troccaz. Grasping: A state of the art. In O. Khatib, J.J. Craig,

and T. Lozano-Perez, editors, Robotics Review 1, pages 71–98. MIT Press,

Cambridge, MA, 1989.

[PW99] Z. Popovic and A. Witkin. Physically based motion transformation. In Proc.

SIGGRAPH ’99, Annual Conference Series. ACM SIGGRAPH, 1999.

[PY90] M. Paterson and F. Yao. Efficient binary space partitions for hidden-surface

removal and solid modeling. Discrete and Computational Geometry, 5(5):485–

503, 1990.

[Qui94] S. Quinlan. Real-time Modification of Collision-free Paths. PhD thesis, Stan-

ford University, Stanford, CA, 1994.

[RBKB94] B. Reich, N. Badler, H. Ko, and W. Becket. Terrain reasoning for human

locomotion. In Computer Animation ’94, pages 76–82, Geneva, Switz., 1994.

[Rei79] J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc.

20th IEEE Symp. on Foundations of Computer Science (FOCS), pages 421–

427, 1979.



164 REFERENCES

[Rey87] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.

Computer Graphics, 21(4):25–34, 1987.

[Rey99] C. W. Reynolds. Steering behaviors for autonomous characters. In Proc. of

1999 Game Developers Conference, 1999. http://hmt.com/cwr/steer/.

[RH91] M. Raibert and J. Hodgins. Animation of dynamic legged locomotion. In Proc.

SIGGRAPH ’91, pages 349–358, 1991.

[RHC86] G. Ridsdale, S. Hewitt, and T. W. Calvert. The interactive specification of

human animation. In M. Green, editor, Proc. of Graphics Interface ’86, pages

121–130, May 1986.

[RKK97] D. C. Ruspini, K. Kolarov, and O. Khatib. The haptic display of complex

graphical environments. In Proc. SIGGRAPH ’97, pages 345–352. ACM SIG-

GRAPH, August 1997. ISBN 0-89791-896-7.

[RN95] S. Russel and P. Norvig. Artificial Intelligence: a Modern Approach. Prentice-

Hall, 1995.

[Rob64] D.A. Robinson. The mechanics of human saccadic eye movements. Journal of

Physiology, 174:245–264, 1964.

[RTT90] O. Renault, N. M. Thalmann, and D. Thalmann. A vision-based approach to

behavioral animation. Visualization and Computer Animation, 1:18–21, 1990.

[S+91] A.M. Smith et al. Group report: What do studies of specific motor acts such

as reaching and grasping tell us about the general principles of goal-directed

motor behavior? In D.R. Humphrey and H.J. Freund, editors, Motor Control:

Concepts and Issues, pages 357–381. John Wiley and Sons, New York, 1991.

[SD91] Z. Shiller and S. Dubowsky. On computing time-optimal motions of robotic

manipulators in the presence of obstacles. IEEE Trans. on Robotics and Au-

tomation, 7(7), December 1991.

[SF89] J.F. Soechting and M. Flanders. Sensorimotor representations for pointing to

targets in three dimensional space. Journal of Neurophysiology, 62(2):582–594,

1989.



REFERENCES 165

[Sho85] K. Shoemake. Animating rotation with quaternion curves. In Proc. of SIG-

GRAPH ’85, pages 245–254, 1985.

[Sim94] K. Sims. Evolving virtual creatures. In Proc. SIGGRAPH ’94, pages 15–22,

1994.

[Soe84] J. F. Soechting. Effect of target size on spatial and temporal characteristics of

a pointing movement in man. Exp. Brain Research, 54:121–132, 1984.

[SOH99] R. W. Sumner, J.F. O’Brien, and J. K. Hodgins. Animating sand, mud, and

snow. Computer Graphics Forum, 18(1), January 1999.

[SS83] J. T. Schwartz and M. Sharir. On the ‘piano movers’ problem: Ii. general

techniques for computing topological properties of real algebraic manifolds.

Advances in applied Mathematics, 4:298–351, 1983.

[Ste95] A Stentz. Optimal and efficient path planning for unknown and dynamic

environments. Int. Journal of Robotics and Automation, 10(3), 1995.

[Str91] S. Strassmann. Desktop Theater: Automating the Generation of Expressive

Animation. PhD thesis, M.I.T. Media Arts and Sciences Program, Toronto,

Canada, 1991.

[Str93] P. S. Strauss. Iris inventor, a 3d graphics toolkit. In ACM SIGPLAN Notices

(OOPSLA ’93 Proc.), volume 28, pages 192–200, October 1993.

[Str94] S. Strassmann. Semi-autonomous animated actors. In Proc. AAAI ’94, pages

128–134, 1994.

[Sve93] P. Svestka. A probabilistic approcach to motion planning for car-like robots.

Technical report, Dept. Computer Science, Utrect Univ., Utrect, The Nether-

lands, April 1993.

[TDT96] N. M. Thalmann and eds. D. Thalmann. Interactive Computer Animation.

Prentice Hall Europe, London, 1996.

[Tel92] Seth Teller. Visibility Computation in Densely Occluded Polyhedral Environ-

ments. PhD thesis, UC Berkeley CS Department, 1992. TR 92/708.



166 REFERENCES

[TF88] D. Terzopoulos and K. Fleischer. Deformable models. The Visual Computer,

4:306–331, 1988.

[TJ95] F. Thomas and O. Johnston. The Illusion of Life: Disney Animation. Hyper-

ion, 1995.

[TNH96] D. Thalmann, H. Noser, and Z. Huang. Interactive Animation, chapter 11,

pages 263–291. Springer-Verlag, 1996.

[TR95] D. Terzopoulos and T. Rabie. Animat vision: Active vision in artificial ani-

mals. In Proc. Fifth Int. Conf. on Computer Vision (ICCV’95), pages 801–808,

Cambridge, MA, June 1995.

[TT90] N. M. Thalmann and D. Thalmann. Computer Animation. Springer-Verlag,

New York, second revised edition, 1990.

[TT94] X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion, perception,

behavior. In Proc. SIGGRAPH ’94, pages 43–50. ACM SIGGRAPH, July

1994. ISBN 0-89791-667-0.

[Tu96] X. Tu. Artificial Animals for Computer Animation: Biomechanics, Locomo-

tion, Perception, and Behavior. PhD thesis, University of Toronto, Toronto,

Canada, 1996.

[UAT95] M. Unuma, K. Anjyo, and R. Takeuchi. Fourier principles for emotion-based

human figure animation. In Proc. SIGGRAPH ’95, 1995.

[Udu77] S. Udupa. Collision Detection and Avoidance in Computer Controlled Manip-

ulators. PhD thesis, Dept. of Electrical Engineering, California Institute of

Technology, 1977.

[VCNT95] P. Volino, M. Courchesne, and N.Magnenet-Thalmann. Versitile and efficient

techniques for simulating cloth and other deformable objects. In Proc. SIG-

GRAPH ’95, pages 137–144, 1995.

[vdP97] M. van de Panne. From footprints to animation. Computer Graphics Forum,

16(4):211–223, October 1997.



REFERENCES 167

[Wal89] Stephen A. Wallace, editor. Perspectives on the coordination of movement.

Elsevier Science Publishers, Amsterdam, 1989.

[Wil88] G. Wilfong. Motion planning in the presence of movable obstacles. In Proc. of

4th ACM Symp. Computational Geometry, pages 279–288, 1988.

[WM88] A. Witkin and Kass M. Spacetime constraints. In Proc. SIGGRAPH ’88, pages

159–168, 1988.

[WP95] A. Witkin and Z. Popovic. Motion warping. In Proc. SIGGRAPH ’95, 1995.

[ZB94] J. Zhao and N. Badler. Inverse kinematics positioning using nonlinear program-

ming for highly articulated figures. ACM Transactions on Graphics, 13(4):313–

336, October 1994.

[ZG89] F.E. Zajac and M.E. Gordon. Determining muscle’s force and action in multi-

articular movements. Exer Sport Sci Rev, 17:187–230, 1989.


